精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD是正方形,DE⊥平面ABCD,AF∥DE,DE=DA=3AF=6.
(Ⅰ)求证:AC⊥BE
(Ⅱ)求多面体ABCDEF的体积.
考点:棱柱、棱锥、棱台的体积,空间中直线与直线之间的位置关系
专题:综合题,空间位置关系与距离
分析:(I)在正方形ABCD中,可得AC⊥BD.根据DE⊥平面ABCD,得DE⊥AC,由线面垂直的判定定理可得AC⊥平面BDE,从而可得AC⊥BE;
(II)证明AB⊥平面ADEF,BC⊥平面CDE,利用V=VB-ADEF+VE-BCD,求出多面体ABCDEF的体积.
解答: (Ⅰ)证明:∵DE⊥平面ABCD,AC?平面ABCD,∴DE⊥AC.
∵四边形ABCD是正方形,∴AC⊥BD,
又∵BD、DE是平面BDE内的相交直线,
∴AC⊥平面BDE,结合BE?平面BDE,得AC⊥BE;
(Ⅱ)解:∵AB⊥AD,AB⊥DE,AD∩DE=D,
∴AB⊥平面ADEF,
同理BC⊥平面CDE,
∵AF∥DE,DE=DA=3AF=6,
∴V=VB-ADEF+VE-BCD=
1
3
×
1
2
×(2+6)×6×6+
1
3
×6×
6×6
2
=84-----------(12分)
点评:本题给出四棱锥的一条侧棱与底面垂直且底面是正方形,求证线线垂直并求多面体ABCDEF的体积,着重考查了线面垂直的判定与性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两超市同时开业,第一年的年销售额都为a万元,甲超市前n(n∈N+)年的总销售额为
a
2
(n2-n+2)万元;从第二年开始,乙超市第n年的销售额比前一年的销售额多(
2
3
n-1a万元.
(Ⅰ)设甲、乙两超市第n年的销售额分别为an,bn万元,求an,bn的表达式;
(Ⅱ)若在同一年中,某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购.若今年(2014年)为第一年,问:在今后若干年内,乙超市能否被甲超市收购?若能,请推算出在哪一年底被收购;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为菱形,PA=PC,
(1)证明:PB⊥AC;
(2)若平面PAC⊥平面平面ABCD,∠ABC=60°,PB=AB,求二面角D-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=lnx-
1
2
ax2-2x存在单调递减区间,则实数a的取值范围是(  )
A、(-∞,1)
B、(-∞,1]
C、(-1,+∞)
D、[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A,直线a,平面α,以下叙述正确的是(  )
A、A∈a,a∈α⇒A∈α
B、A∈a,a?α⇒A∉α
C、A∉a,a?α⇒A∉α
D、A∈a,a?α⇒A?α

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=axlnx(a≠0)
(1)若曲线y=f(x)在点P(1,f(1))处的切线与直线x-y+1=0垂直,求a及函数f(x)的最值;
(2)若m>0,n>0,a>0,证明:f(m)+f(n)≥f(m+n)-a(m+n)ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n表示两条不同直线,α表示平面,
①若m∥α,n∥α,则m∥n
②若m⊥α,n?α,则m⊥n
③若m⊥α,m⊥n,则n∥α
④若m∥α,m⊥n,则n⊥α
以上四个命题中正确命题个数(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、命题“?x∈R,ex>0”的否定是“?x∈R,ex>0”
B、命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题
C、“x2+2x≥ax在x∈[1,2]上恒成立”?“(x2+2x)min≥(ax)min在x∈[1,2]上恒成立”
D、命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为真命题

查看答案和解析>>

同步练习册答案