精英家教网 > 高中数学 > 题目详情
已知椭圆经过如下五个点中的三个点:.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为椭圆的左顶点,为椭圆上不同于点的两点,若原点在的外部,且为直角三角形,求面积的最大值.
(Ⅰ);(Ⅱ)

试题分析:(Ⅰ)因为关于原点对称,由椭圆的对称性可知在椭圆上。因为在椭圆上则不在椭圆上。所以在椭圆上。解方程组可得的值。(Ⅱ)需讨论哪个角为直角只讨论即可,因为点的位置没有固定,的情况相同。如当时,设直线,联立方程消去消去得关于的一元二次方程,由韦达定理得根与系数的关系。根据,则直线垂直其斜率相乘等于,列式计算可得则说明原点在的外部,符合条件,否则不符合条件舍掉。在求面积时若采用先求弦再求点的距离最后求面积的方法计算过于繁琐,所以求的面积时可用分割法,计算较简单。
试题解析:解:(Ⅰ)由知,不在椭圆上,即椭圆经过.
于是.
所以 椭圆的方程为:.                                 2分
(Ⅱ)①当时,设直线,由
.设,则
所以

.
于是,此时,所以 直线.
因为,故线段轴相交于,即原点在线段的延长线上,即原点在的外部,符合题设.                           6分
所以

.
时取到最大值.                                        9分
②当时,不妨设.
设直线,由.
所以 .
所以,由,可得直线.
.
所以.
所以线段轴相交于.
显然原点在线段上,即原点在的内部,不符合题设.
综上所述,所求的面积的最大值为.                           12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,离心率为,P是椭圆上一点,且面积的最大值等于2.
(1)求椭圆的方程;
(2)直线y=2上是否存在点Q,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点Q的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设点分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为.
(I)求椭圆的方程;
(II)设直线(直线不重合),若均与椭圆相切,试探究在轴上是否存在定点,使点的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点为,过点的直线交抛物线于点.
(Ⅰ)若(点在第一象限),求直线的方程;
(Ⅱ)求证:为定值(点为坐标原点).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:,定点M(0,5),直线轴交于点F,O为原点,若以OM为直径的圆恰好过与抛物线C的交点.
(1)求抛物线C的方程;
(2)过点M作直线交抛物线C于A,B两点,连AF,BF延长交抛物线分别于,求证: 抛物线C分别过两点的切线的交点Q在一条定直线上运动.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆两焦点坐标分别为,,一个顶点为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在斜率为的直线,使直线与椭圆交于不同的两点,满足. 若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线与直线相交于A、B 两点.
(1)求证:
(2)当的面积等于时,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C=1(a>b>0)的两个焦点F1F2和上下两个顶点B1B2是一个边长为2且∠F1B1F2为60°的菱形的四个顶点.
(1)求椭圆C的方程;
(2)过右焦点F2的斜率为k(k≠0)的直线l与椭圆C相交于EF两点,A为椭圆的右顶点,直线AEAF分别交直线x=3于点MN,线段MN的中点为P,记直线PF2的斜率为k′,求证: k·k′为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是(      )
A.B.C.D.

查看答案和解析>>

同步练习册答案