精英家教网 > 高中数学 > 题目详情
f'(x)是f(x)的导函数,f'(x)的图象如右图所示,则f(x)的图象只可能是(   )
(A)       (B)      (C)     (D)
选D
 由导数的图像可知,f(x)在[a,b]上是增函数,并且并且增速是先快后慢所以应选D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(理)(14分)设函数,其中
(I)当时,判断函数在定义域上的单调性;
(II)求函数的极值点;
(III)证明对任意的正整数n,不等式都成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数上是增函数,在上为减函数.
(1)求的表达式;
(2)若当时,不等式恒成立,求实数的值;
(3)是否存在实数使得关于的方程在区间[0,2]上恰好有两个相异的实根,若存在,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分18分)已知:函数 ,在区间上有最大值4,最小值1,设函数
(1)求的值及函数的解析式;
(2)若不等式时恒成立,求实数的取值范围;
(3)如果关于的方程有三个相异的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数在区间上不单调,则实数的取值范围是(   ) .
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)讨论函数的单调性;
(Ⅱ)当时,求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递增区间是             

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数为常数)在定义域上是增函数,则实数的取值范围是                 

查看答案和解析>>

同步练习册答案