分析 (1)利用An+1=0.8An+0.3Bn、Bn+1=0.2An+0.7Bn,结合$|\begin{array}{l}{{A}_{n+1}}\\{{B}_{n+1}}\end{array}|$=M$|\begin{array}{l}{{A}_{n}}\\{{B}_{n}}\end{array}|$即得结论;
(2)利用矩阵的初等行变换计算即得结论.
解答 解:(1)根据题意可知:An+1=0.8An+0.3Bn,
Bn+1=0.2An+0.7Bn,
∵矩阵$|\begin{array}{l}{{A}_{n+1}}\\{{B}_{n+1}}\end{array}|$=M$|\begin{array}{l}{{A}_{n}}\\{{B}_{n}}\end{array}|$,
∴矩阵M=$[\begin{array}{l}{0.8}&{0.3}\\{0.2}&{0.7}\end{array}]$;
(2)$[\begin{array}{l}{0.8}&{0.3}&{1}&{0}\\{0.2}&{0.7}&{0}&{1}\end{array}]$→$[\begin{array}{l}{1}&{\frac{3}{8}}&{\frac{5}{4}}&{0}\\{2}&{7}&{0}&{10}\end{array}]$→$[\begin{array}{l}{1}&{\frac{3}{8}}&{\frac{5}{4}}&{0}\\{0}&{\frac{25}{4}}&{-\frac{5}{2}}&{10}\end{array}]$→$[\begin{array}{l}{1}&{\frac{3}{8}}&{\frac{5}{4}}&{0}\\{0}&{1}&{-\frac{2}{5}}&{\frac{8}{5}}\end{array}]$→$[\begin{array}{l}{1}&{0}&{\frac{7}{5}}&{-\frac{3}{5}}\\{0}&{1}&{-\frac{2}{5}}&{\frac{8}{5}}\end{array}]$,
∴矩阵M的逆矩阵为:$[\begin{array}{l}{\frac{7}{5}}&{-\frac{3}{5}}\\{-\frac{2}{5}}&{\frac{8}{5}}\end{array}]$.
点评 本题是一道关于数列与矩阵的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{2}$ | B. | $\frac{8}{3}$ | C. | $\frac{5}{2}$ | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com