精英家教网 > 高中数学 > 题目详情
10.化简$\frac{sin(π+α)•cos(\frac{3π}{2}-α)•\frac{1}{tan(-α)}}{tan(α-π)•cos(α-2π)•sin(\frac{π}{2}+α)}$.

分析 根据诱导公式,化简即可.

解答 解:$\frac{sin(π+α)•cos(\frac{3π}{2}-α)•\frac{1}{tan(-α)}}{tan(α-π)•cos(α-2π)•sin(\frac{π}{2}+α)}$=$\frac{-sinα•sinα•\frac{1}{tanα}}{tanαcosα(-cosα)}$=1.

点评 本题考查了三角函数的诱导公式,关键是掌握公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.一个椭圆的半焦距为2,离心率e=$\frac{2}{3}$,那么它的长轴长是(  )
A.3B.$\sqrt{5}$C.2$\sqrt{5}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=loga(6-ax)在[0,1]上为减函数,则a的取值范围是(  )
A.(0,1)B.(1,6]C.(1,6)D.[6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=2cos2$\frac{x}{2}$-3的最小值和周期分别为(  )
A.-1,πB.-3,2πC.-1,2πD.-3,π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.α,β是关于x的方程x2-2(cosθ+1)x+cos2θ=0的两个实根,且|α-β|≤2$\sqrt{2}$,求θ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.用导数证明:$\frac{si{n}^{8}x}{8}$-$\frac{co{s}^{8}x}{8}$-$\frac{si{n}^{6}x}{3}$+$\frac{co{s}^{6}x}{6}$+$\frac{si{n}^{4}x}{4}$=$\frac{1}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(2-x),x<2}\\{{x}^{\frac{2}{3},}x≥2}\end{array}\right.$则不等式f(3x+1)<4的解集为(-5,$\frac{7}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,已知三边a=5,b=12,c=13,判断三角形是锐角三角形、直角三角形还是钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知0<α<π,若cosα-sinα=-$\frac{\sqrt{5}}{5}$,求:$\frac{2sinαcosα-cosα+1}{1-tanα}$的值.

查看答案和解析>>

同步练习册答案