精英家教网 > 高中数学 > 题目详情

【题目】已知正项数列满足: .为数列的前项和.

(Ⅰ)求证:对任意正整数,有

(Ⅱ)设数列的前项和为,求证:对任意,总存在正整数,使得时, .

【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.

【解析】试题分析:

(I)分类讨论两种情况,结合裂项求和即可证得题中的结论;

(II)结合(I)的结论的结论可知数列是单调递增数列,构造函数,该函数在区间上单调递增,然后结合数列的性质即可证得题中的结论.

试题解析:

Ⅰ)证法一:因为

时,

,即

时, ,综上, .

证法二:考虑到数列的前项和为,猜想

时,结论显然成立.假设时, 成立,

则当时,由,得

,结论成立.

综上:对任意,有

以下同解法一.

Ⅱ)由(Ⅰ)可知

.因为在区间上单调递增,

所以

从而

时,

所以

为不小于的最小整数,取 ()

时, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx+c满足f(2﹣x)=f(2+x),f(0)>0,且f(m)=f(n)=0(m≠n),则log4m﹣ n的值是(
A.小于1
B.等于1
C.大于1
D.由b的符号确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】广播电台为了了解某地区的听众对某个戏曲节目的收听情况,随机抽取了100名听众进行调查,下面是根据调查结果绘制的听众日均收听该节目的频率分布直方图,将日均收听该节目时间不低于40分钟的听众成为“戏迷”

(1)根据已知条件完成2×2列联表,并判断“戏迷”与性别是否有关?

“戏迷”

非戏迷

总计

10

55

总计

附:K2=

P(K2≥k)

0.05

0.01

k

3.841

6.635


(2)将上述调查所得到的频率当作概率.现在从该地区大量的听众中,采用随机抽样的方法每次抽取1名听众,抽取3次,记被抽取的3名听众中“戏迷”的人数为X,若每次抽取的结果相互独立,求X的分布列,数学期望及方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x|x﹣a|,若对于任意x1 , x2∈[3,+∞),x1≠x2 , 不等式 >0恒成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形是矩形, 平面 . 分别是线段的中点.

(Ⅰ)求证: 平面

(Ⅱ)求与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)解不等式f(x)<
(2)求函数f(x)值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,曲线C:(x﹣1)2+y2=1.直线l经过点P(m,0),且倾斜角为 .以O为极点,以x轴正半轴为极轴,建立坐标系.
(1)写出曲线C的极坐标方程与直线l的参数方程;
(2)若直线l与曲线C相交于A,B两点,且|PA||PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)(…是自然对数的底数).

(1)求单调区间;

(2)讨论在区间内零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的 ,则判断框内填入的条件可以是(
A.k≥7
B.k>7
C.k≤8
D.k<8

查看答案和解析>>

同步练习册答案