精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,PA⊥平面ABC,AB=BC=CA=2PA,D、E分别是棱AB,AC上的动点,且AD=CE,连接DE,当三棱锥P-ADE体积最大时,平面PDE和平面PBC所成二面角的余弦值为(  )
A.
1
2
B.
3
2
C.
21
14
D.
5
7
14

由题意,设AB=BC=CA=2PA=2,AD=CE=t,则三棱锥P-ADE体积为
1
3
×
1
2
×t×(2-t)×
3
2
=
3
12
(-t2+2t)

=-
3
12
(t-1)2+
3
12

∴t=1时,三棱锥P-ADE体积最大,此时,D、E分别是棱AB,AC上的中点
取DE中点M,BC中点N,连接PM,MN,PN,则
∵DEBC,PM⊥DE,PN⊥BC
∴∠MPN为平面PDE和平面PBC所成二面角,
在△MNP中,PM=
7
2
,MN=
3
2
,PN=2,
∴cos∠MPN=
PM2+PN2-MN2
2PM•PN
=
7
4
+4-
3
4
2•
7
2
•2
=
5
7
14

故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,∠ACB=90°,AB=2,BC=1,AA1=
3

(1)求证:A1C⊥平面AB1C1
(2)求A1B1与平面AB1C1所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,S是正方形ABCD所在平面外一点,且SD⊥面ABCD,AB=1,SB=
3

(1)求证:BC⊥SC;
(2)设M为棱SA中点,求异面直线DM与SB所成角的大小
(3)求面ASD与面BSC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,直四棱柱ABCD-A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC∩BD=O,A1C1∩B1D1=O1,则二面角O1-BC-D的大小为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.
(1)求二面角E-AB-D的大小;
(2)求四面体ABDE的表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体AC1
(1)在BD上确定一点E,使D1E面A1C1B;
(2)求直线BB1和面A1C1B所成角的正弦值;
(3)求面A1C1B与底面ABCD所成二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

把边长为a的正△ABC沿高线AD折成60°的二面角,这时A到边BC的距离是(  )
A.
15
4
a
B.
6
3
a
C.
13
4
a
D.
3
2
a

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正三角形ABC按中线AD折叠,使得二面角B-AD-C的大小为60°,则∠BAC的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△ABC中,AC=BC=2,∠ACB=120°,D为AB的中点,E,F分别在线段AC,BC上,且EFAB,EF交CD于G,把△ADC沿CD折起,如图所示,

(1)求证:E1F平面A1BD;
(2)当二面角A1-CD-B为直二面角时,是否存在点F,使得直线A1F与平面BCD所成的角为60°,若存在求CF的长,若不存在说明理由.

查看答案和解析>>

同步练习册答案