精英家教网 > 高中数学 > 题目详情

(本题满分12分) 

已知a∈R,函数f(x)=4x3-2ax+a.

(1)求f(x)的单调区间;

(2)证明:当0≤x≤1时,f(x)+|2-a|>0.

 

【答案】

(1)函数f(x)的单调递增区间为

单调递减区间为.(2)见解析。

【解析】

试题分析:(1)根据函数的导数符号与函数单调性的关系来判定求解其单调区间。

(2)要证明不等式恒成立问题,那么要转化为函数的最值问题来处理即可或者构造函数求解函数的 最小值大于零得到。

解:

 (1)由题意得f′(x)=12x2-2a.

当a≤0时,f′(x)≥0恒成立,此时f(x)的单调递增区间为(-∞,+∞).

当a>0 时,f′(x)=12,此时

函数f(x)的单调递增区间为

单调递减区间为.

(2)由于0≤x≤1,故

当a≤2时,f(x)+|a-2|=4x3-2ax+2≥4x3-4x+2.

当a>2时,f(x)+|a-2|=4x3+2a(1-x)-2≥4x3+4(1-x)-2=4x3-4x+2.

设g(x)=2x3-2x+1,0≤x≤1,则g′(x)=6x2-2=6,于是

 

x

 

0

 

 

 

-

0

+

 

1

减函数

极小值

增函数

1

所以g(x)min=g=1->0.

所以当0≤x≤1时,2x3-2x+1>0.

故f(x)+|a-2|≥4x3-4x+2>0.

考点:本试题主要考查了导数在研究函数问题中的运用。

点评:对于含有参数的二次不等式问题的求解是解决导数中常见的非常重要的,注意对于开口和判别式的情况进行分类讨论得到结论。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案