精英家教网 > 高中数学 > 题目详情

【题目】某中学随机选取了名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图,观察图中数据,完成下列问题.

)求的值及样本中男生身高在(单位:)的人数.

)假设用一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高.

)在样本中,从身高在(单位:)内的男生中任选两人,求这两人的身高都不低于的概率.

【答案】(1)4;(2)0.4

【解析】试题分析:)由题意,根据频率分布直方图各个矩形的面积之和为,即可求解的值,进而得到身高在的频率和人数为

根据平均数的计算公式,即可求解全校男生的平均身高;

根据频率分布直方图,可得身高在内的男生的人数,再利用古典概型的概率计算公式,即可求解相应的概率.

试题解析:

)由题意:

身高在的频率为,人数为

)设样本中男生身高的平均值为,则:

所以,估计该校全体男生的平均身高为

)在样本中,身高在(单位:)内的男生分别由人,人,从身高在(单位:)内的男生中任选两人,有种,这两人的身高都不低于,有种,所以所求概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义“正对数”:ln+x= ,现有四个命题: ①若a>0,b>0,则ln+(ab)=bln+a
②若a>0,b>0,则ln+(ab)=ln+a+ln+b
③若a>0,b>0,则 b
④若a>0,b>0,则ln+(a+b)≤ln+a+ln+b+ln2
其中的真命题有: . (写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:

古文迷

非古文迷

合计

男生

26

24

50

女生

30

20

50

合计

56

44

100

(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?
(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;
(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.
参考公式:K2= ,其中n=a+b+c+d.
参考数据:

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.321

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(2x2+x﹣y)n的展开式中各项系数的和为32,则展开式中x5y2的系数为 . (用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有10人.在20名女性驾驶员中,平均车速超过100km/h的有5人,不超过100km/h的有15人.
(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关;

平均车速超过100km/h人数

平均车速不超过100km/h人数

合计

男性驾驶员人数

女性驾驶员人数

合计

(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为女性且车速不超过100km/h的车辆数为ζ,若每次抽取的结果是相互独立的,求ζ的分布列和数学期望.
参考公式: ,其中n=a+b+c+d.
参考数据:

P(K2≥k0

0.150

0.100

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为 ,中奖可以获得2分;方案乙的中奖率为 ,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为x,求x≤3的概率;
(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过曲线C1 =1(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为(
A.
B. ﹣1
C. +1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下表:

1,

2,3,

4,5,6,7,

8,9,10,11,12,13,14,15,

……

问:(1)此表第n行的第一个数与最后一个数分别是多少?

(2)此表第n行的各个数之和是多少?

(3)2012是第几行的第几个数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若集合A={1,2,3},B={(x,y)|x+y﹣4>0,x,y∈A},则集合B中的元素个数为(
A.9
B.6
C.4
D.3

查看答案和解析>>

同步练习册答案