精英家教网 > 高中数学 > 题目详情
已知定点,曲线C是使为定值的点的轨迹,曲线过点.
(1)求曲线的方程;
(2)直线过点,且与曲线交于,当的面积取得最大值时,求直线的方程;
(3)设点是曲线上除长轴端点外的任一点,连接,设的角平分线交曲线的长轴于点,求的取值范围.
(1);(2);(3).

试题分析:(1)依题意并结合椭圆的定义,先判断出曲线的轨迹是以原点为中心,以为焦点的椭圆,从而得出椭圆中参数的值,由计算出参数的值,最后由计算出的取值即可得到曲线的方程;(2)设点,联立直线与椭圆的方程,消去得到,从而由二次方程根与系数的关系得到,再由弦长公式计算出,再计算出点到直线的距离,由公式计算出三角形的面积(含参数),结合基本不等式可确定面积最大时的值,从而可确定直线方程;(3)设,由角平分线可得=,化简并代入坐标进行运算,即可得出,然后根据,可确定的取值范围.
试题解析:(1)    2分
曲线C为以原点为中心,为焦点的椭圆
设其长半轴为,短半轴为,半焦距为,则
曲线C的方程为                                4分
(2)设直线的为代入椭圆方程,得
,计算并判断得
,得

到直线的距离,设,则

时,面积最大
的面积取得最大值时,直线l的方程为:
  9分
(3)由题意可知:=,=        10分
其中,将向量坐标代入并化简得:
m(,                12分
因为,所以,                        13分
,所以                        14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点在椭圆:上,以为圆心的圆与轴相切于椭圆的右焦点,且,其中为坐标原点.
(1)求椭圆的方程;
(2)已知点,设是椭圆上的一点,过两点的直线轴于点,若, 求直线的方程;
(3)作直线与椭圆:交于不同的两点,,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为椭圆的左右焦点,是坐标原点,过作垂直于轴的直线交椭圆于,设 .
(1)证明: 成等比数列;
(2)若的坐标为,求椭圆的方程;
(3)在(2)的椭圆中,过的直线与椭圆交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线x2-y2=2若直线n的斜率为2 ,直线n与双曲线相交于A、B两点,线段AB的中点为P,
(1)求点P的坐标(x,y)满足的方程(不要求写出变量的取值范围);
(2)过双曲线的左焦点F1,作倾斜角为的直线m交双曲线于M、N两点,期中,F2是双曲线的右焦点,求△F2MN的面积S关于倾斜角的表达式。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,左、右两个焦点分别为,上顶点为正三角形且周长为6,直线与椭圆相交于两点.
(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线,点,过的直线交抛物线两点.
(1)若线段中点的横坐标等于,求直线的斜率;
(2)设点关于轴的对称点为,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知点是动点,且的三边所在直线的斜率满足
(1)求点的轨迹的方程;
(2)若是轨迹上异于点的一个点,且,直线交于点,问:是否存在点,使得的面积满足?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点A (p为常数,p>0),Bx轴负半轴上的一个动点,动点M使得|AM|=|AB|,且线段BM的中点Gy轴上.

(1)求动点M的轨迹C的方程;
(2)设EF为曲线C的一条动弦(EF不垂直于x轴),其垂直平分线与x轴交于点T(4,0),当p=2时,求|EF|的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆的左顶点的斜率为的直线交椭圆于另一个点,且点轴上的射影恰好为右焦点,若,则椭圆离心率的取值范围是_____________.

查看答案和解析>>

同步练习册答案