分析 不等式等价于${log_a}(4-3x)>-{log_{\frac{1}{a}}}(2+x)$=loga(x+2),等价于 $\left\{\begin{array}{l}{4-3x>0}\\{x+2>0}\\{4-3x<x+2}\end{array}\right.$,由此求得x的范围.
解答 解:当0<a<1时,不等式${log_a}(4-3x)>-{log_{\frac{1}{a}}}(2+x)$,
等价于 ${log_a}(4-3x)>-{log_{\frac{1}{a}}}(2+x)$=${log}_{\frac{1}{a}}\frac{1}{x+2}$=loga(x+2),
等价于 $\left\{\begin{array}{l}{4-3x>0}\\{x+2>0}\\{4-3x<x+2}\end{array}\right.$,∴$\frac{1}{2}$<x<$\frac{4}{3}$,
故答案为:($\frac{1}{2}$,$\frac{4}{3}$).
点评 本题主要考查对数函数的定义域和单调性,对数不等式的解法,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{8}$ | B. | $\frac{5}{16}$ | C. | $\frac{4}{7}$ | D. | $\frac{5}{14}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 012 | B. | 2 | C. | 2 013 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | -1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com