精英家教网 > 高中数学 > 题目详情
4.下列命题错误的是(  )
A.命题“若x2<1,则-1<x<1”的逆否命题是“若x≥1或x≤-1,则x2≥1”
B.“am2<bm2”是“a<b”的充分不必要条件
C.命题“p或q”为真命题,则命题“p”和命题“q”均为真命题
D.命题p:存在x0∈R,使得${{x}_{0}}^{2}$+x0+1<0,则¬p:任意x∈R,都有x2+x+1≥0

分析 A中逆否命题应先逆得逆命题:条件结论互换;再求否命题:条件,结论都否定;
B中am2<bm2能推出a<b,但a<b不能推出am2<bm2,当m2=0时不成立;
C中p或q为真,则只要有一个为真就可以;
D中存在命题的否定,应把存在改为任意,再否定结论.

解答 解:A中逆否命题应先逆得逆命题:条件结论互换;再求否命题:条件,结论都否定;故正确;
B中am2<bm2能推出a<b,但a<b不能推出am2<bm2,当m2=0时不成立,故正确;
C中p或q为真,则只要有一个为真就可以,故错误;
D中存在命题的否定,应把存在改为任意,再否定结论,命题p:存在x0∈R,使得${{x}_{0}}^{2}$+x0+1<0,则¬p:任意x∈R,都有x2+x+1≥0,故正确.
故选C.

点评 考查了四中命题,属于基础题型,应牢记.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.sin160°cos10°+cos20°sin10°=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.经过双曲线上任一点M作平行于实轴的直线,与渐近线交于P、Q两点,则|MP|•|MQ|为定值,其值为(  )
A.a2B.b2C.c2D.ab

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知椭圆的方程为$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{{m}^{2}}$=1,焦点在x轴上,则m的取值范围是(  )
A.-4≤m≤4B.-4<m<4且m≠0C.m>4或m<-4D.0<m<4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$+2cos2$\frac{x}{2}$.
(I)求f(x)的最小正周期和单调递减区间;
(II)若f(B)=3,在△ABC中,角 A,B,C的对边分别是a,b,c,若b=3,sinC=2sin A,求a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=x3-3x2-9x+5的极值情况是(  )
A.在x=-1处取得极大值,但没有最小值
B.在x=3处取得极小值,但没有最大值
C.在x=-1处取得极大值,在x=3处取得极小值
D.既无极大值也无极小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示,在单位圆O的某一直径AB上随机地取一点Q,则过点Q且与该直径垂直的
弦的长度不超过1的概率(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.1-$\frac{\sqrt{3}}{2}$D.1-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.为了得到函数y=sin3x+cos3x图象,可将函数$y=\sqrt{2}sin3x$图象(  )
A.向左平移$\frac{π}{12}$个单位B.向右平移$\frac{π}{12}$个单位
C.向右平移$\frac{π}{4}$个单位D.向左平移$\frac{π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{bn}的前n项和为Sn,b1=1,且点(n.Sn+n+2)在函数y=2x+1的图象上,若数列{an}满足a1=1,an=bn($\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n-1}}$)(n≥2,n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)(i)求证:$\frac{{a}_{n}+1}{{a}_{n+1}}$=$\frac{{b}_{n}}{{b}_{n+1}}$(n≥2,n∈N*);
(ii)求证:(1+$\frac{1}{{a}_{1}}$)(1+$\frac{1}{{a}_{2}}$)(1+$\frac{1}{{a}_{3}}$)…(1+$\frac{1}{{a}_{n}}$)<$\frac{10}{3}$.

查看答案和解析>>

同步练习册答案