精英家教网 > 高中数学 > 题目详情

【题目】已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.
(1)求C的方程;
(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.

【答案】
(1)解:由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.

设动圆的半径为R,

∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,

而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,

∴a=2,c=1,b2=a2﹣c2=3.

∴曲线C的方程为 (x≠﹣2).


(2)解:设曲线C上任意一点P(x,y),

由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.

①l的倾斜角为90°,则l与y轴重合,可得|AB|=2

②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,

设l与x轴的交点为Q,则 ,可得Q(﹣4,0),所以可设l:y=k(x+4),

由l于M相切可得: ,解得

时,联立 ,得到7x2+8x﹣8=0.

∴|AB|= = =

由于对称性可知:当 时,也有|AB|=

综上可知:|AB|=2


【解析】(1)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(2)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据 ,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C1的方程为x2+(y+1)2=4,圆C2的圆心坐标为(2,1).

(1)若圆C1与圆C2相交于AB两点,且|AB|=,求点C1到直线AB的距离;

(2)若圆C1与圆C2相内切,求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为点的坐标为.

(1)求过点且与圆相切的直线方程;

(2)过点任作一条直线与圆交于不同两点,且圆轴正半轴于点,求证:直线的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三角形所在的平面与长方形所在的平面垂直,.点边的中点,点分别在线段上,且.

(1)证明:

(2)求二面角的正切值;

(3)求直线与直线PG所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若不等式的解集为,求实数的值;

(2)若不等式对一切实数恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在区间上的值域为,则称区间为函数的一个“倒值区间”.定义在上的奇函数,当时,

(Ⅰ)求函数的解析式;

(Ⅱ)求函数上的“倒值区间”;

(Ⅲ)记函数在整个定义域内的“倒值区间”为,设,则是否存在实数,使得函数的图像与函数的图像有两个不同的交点?若存在,求出的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙的半径为,圆心的坐标为,其中为该圆的两条切线,为坐标原点,为切点,在第一象限,在第四象限.

)若时,求切线的斜率.

)若时,求外接圆的标准方程.

)当点在轴上运动时,将表示成的函数,并求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解高中生的艺术素养,从学校随机选取男,女同学各50人进行研究,对这100名学生在音乐、美术、戏剧、舞蹈等多个艺术项目进行多方位的素质测评,并把调查结果转化为个人的素养指标,制成下图,其中“*”表示男同学,“+”表示女同学.

,则认定该同学为“初级水平”,若,则认定该同学为“中级水平”,若,则认定该同学为“高级水平”;若,则认定该同学为“具备一定艺术发展潜质”,否则为“不具备明显艺术发展潜质”.

(I)从50名女同学的中随机选出一名,求该同学为“初级水平”的概率;

(Ⅱ)从男同学所有“不具备明显艺术发展潜质的中级或高级水平”中任选2名,求选出的2名均为“高级水平”的概率;

(Ⅲ)试比较这100名同学中,男、女生指标的方差的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)设直线l过点(23)且与直线2x+y+1=0垂直,lx轴,y轴分别交于AB两点,求|AB|

2)求过点A4-1)且在x轴和y轴上的截距相等的直线l的方程.

查看答案和解析>>

同步练习册答案