精英家教网 > 高中数学 > 题目详情
5.已知函数$f(x)=\sqrt{3}sinxcosx-{cos^2}x-\frac{1}{2}$.
(1)求函数f(x)的最小正周期和对称轴;
(2)将函数f(x)的图象各点纵坐标不变,横坐标伸长为原来的2倍,然后向左平移$\frac{π}{3}$个单位,得函数g(x)的图象.若a,b,c分别是△ABC三个内角A,B,C的对边,a+c=6,且g(B)=0,求b的取值范围.

分析 (1)化函数f(x)为正弦型函数,根据正弦函数的图象与性质即可得出f(x)的对称轴与最小正周期;
(2)根据三角函数图象平移法则,得出函数g(x)的解析式,利用g(B)=0求出B的值,
再利用余弦定理和基本不等式求出b的取值范围.

解答 解:(1)函数f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$(1+cos2x)-$\frac{1}{2}$
=sin(2x-$\frac{π}{6}$)-1,
令2x-$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,
解得x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,
所以函数f(x)的对称轴为$x=\frac{kπ}{2}+\frac{π}{3}$,k∈Z,周期为π;
(2)函数f(x)的图象各点纵坐标不变,横坐标伸长为原来的2倍,
得函数y=sin(x-$\frac{π}{6}$)-1的图象,
再向左平移$\frac{π}{3}$个单位,得函数y=sin(x+$\frac{π}{3}$-$\frac{π}{6}$)-1的图象,
所以函数g(x)=sin(x+$\frac{π}{6}$)-1;
又△ABC中,a+c=6,g(B)=0,
所以sin(B+$\frac{π}{6}$)-1=0,
所以B+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z,则B=$\frac{π}{3}$;
由余弦定理可知,
b2=a2+c2-2ac•cos$\frac{π}{3}$=a2+c2-ac=(a+c)2-3ac≥36-3•${(\frac{a+c}{2})}^{2}$=9,
当且仅当a=c=3时取“=”,所以b≥3;
又b<a+c=6,所以b的取值范围是[3,6).

点评 本题考查了三角恒等变换以及三角函数图象平移、余弦定理和基本不等式的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知一扇形的弧所对的圆心角为60°,半径r=20cm,则扇形的周长为40+$\frac{20}{3}$πcm.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在长方体ABCD-A1B1C1D1中,AB=2AD=4,A A1=2$\sqrt{2}$,M是C1D1的中点.
(1)在平面A1B1C1D1内,请作出过点M与BM垂直的直线l,并证明l⊥BM;
(2)设(1)中所作直线l与BM确定平面为α,求直线BB1与平面α所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.二项式(x$\sqrt{x}$-$\frac{1}{x}$)5的展开式中常数项为-10.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.2016年1月1日,我国实施“全面二孩”政策,中国社会科学院在某地随机抽取了150名已婚男性,其中愿意生育二孩的有100名,经统计,该100名男性的年龄情况对应的频率分布直方图如下:
(1)根据频率分布直方图,估计这100名已婚男性的年龄平均值$\overline{x}$、众数、中位数和样本方差s2(同组数据用区间的中点值代替,结果精确到个位);
(2)若在愿意生育二孩的且年龄在[30,34),[34,38),[38,42)的三组已婚男性中,用分层抽样的方法抽取19人,试估算每个年龄段应各抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设f(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤|f($\frac{π}{6}$)|对一切x∈R恒成立,则以下结论正确的是①②④(写出所有正确结论的编号).
①$f(\frac{5π}{12})=0$;
②$|{f(\frac{7π}{12})}$|≥$|{f(\frac{π}{3})}$|;
③f(x)的单调递增区间是(kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$)(k∈Z);
④f(x)既不是奇函数也不是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$过抛物线y2=8x的焦点,且与双曲线${x^2}-\frac{y^2}{2}=1$有相同的焦点,则该椭圆的方程是(  )
A.$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$B.$\frac{x^2}{4}+{y^2}=1$C.${x^2}+\frac{y^2}{4}=1$D.$\frac{{x}^{2}}{2}$+$\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线y=4x2,过点P(0,2)作直线l,交抛物线于A,B两点,O为坐标原点,
(Ⅰ)求证:$\overrightarrow{OA}•\overrightarrow{OB}$为定值;
(Ⅱ)求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.抛物线y=-$\frac{1}{8}{x}^{2}$的准线方程是(  )
A.x=$\frac{1}{32}$B.x=$\frac{1}{2}$C.y=2D.y=4

查看答案和解析>>

同步练习册答案