精英家教网 > 高中数学 > 题目详情

【题目】某公司生产电饭煲,每年需投入固定成本40万元,每生产1万件还需另投入16万元的变动成本,设该公司一年内共生产电饭煲万件并全部销售完,每一万件的销售收入为万元,且),该公司在电饭煲的生产中所获年利润为(万元),(注:利润=销售收入-成本)

1写出年利润(万元)关于年产量(万件)的函数解析式,并求年利润的最大值;

2为了让年利润不低于2360万元,求年产量的取值范围.

【答案】(1)2760;(2).

【解析】试题分析:(1)根据利润=销售收入-成本,写出年利润的函数,利用均值不等式求最值即可;

(2)转化为关于年产量的一元二次不等式,解不等式即可求解.

试题解析:

(1)

当且仅当时,“=”成立,

,即年利润的最大值为2760.

(2) 解:

整理得

解得: ,又,所以

答:为了让年利润不低于2360万元,年产量的范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点在圆上, 的坐标分别为 ,线段的垂直平分线交线段于点

1)求点的轨迹的方程;

2)设圆与点的轨迹交于不同的四个点,求四边形的面积的最大值及相应的四个点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线的参数方程为 (为参数),以直角坐标系原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)设点为曲线上的动点,求点到直线距离的最大值及其对应的点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形的对角线相交于点,四边形为矩形,平面平面.

(1)求证:平面平面

(2)若点在线段上,且,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算:
(1)[(5 0.5+(0.008) ÷(0.2)1]÷0.06250.25
(2)[(1﹣log63)2+log62log618]÷log64.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组对象不能构成一个集合的是(
A.不超过20的非负实数
B.方程x2﹣9=0在实数范围内的解
C. 的近似值的全体
D.临川十中2016年在校身高超过170厘米的同学的全体

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A,B是抛物线x2=2pyp>0)上的两个动点,O为坐标原点,非零向量满足

(1)求证:直线AB经过一定点;

(2)当AB的中点到直线y-2x=0的距离的最小值为时,求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的左焦点F为圆的圆心,且椭圆C上的点到点F的距离最小值为

I)求椭圆C的方程;

II)已知经过点F的动直线与椭圆C交于不同的两点AB,点M坐标为),证明: 为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(1)讨论函数的单调性;

(2)当时, 恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案