A. | $\frac{{\sqrt{2}}}{3}$ | B. | $\frac{{\sqrt{2}}}{4}$ | C. | $\frac{{\sqrt{2}}}{6}$ | D. | $\frac{{\sqrt{2}}}{8}$ |
分析 由sinα及α为第三象限角,利用同角三角函数间的基本关系求出cosα的值,进而求出tanα的值,原式变形后代入计算即可求出值.
解答 解:∵sinα=-$\frac{{\sqrt{3}}}{3}$,且α是第三象限角,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{\sqrt{6}}{3}$,tanα=$\frac{\sqrt{2}}{2}$,
则原式=2sinαcosα-tanα=2×(-$\frac{\sqrt{3}}{3}$)×(-$\frac{\sqrt{6}}{3}$)-$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{6}$,
故选:C.
点评 此题考查了同角三角函数间基本关系的运用,熟练掌握基本关系是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $({\frac{4}{9},+∞})$ | B. | $({\frac{4}{9},\frac{1}{2}})$ | C. | $({\frac{4}{9},\frac{1}{2}}]$ | D. | $({-∞,\frac{4}{9}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a4+a6>2a5 | B. | a4+a6<2a5 | ||
C. | a4+a6=2a5 | D. | a4+a6与2a5的大小与a有关 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com