精英家教网 > 高中数学 > 题目详情
已知圆心为C的圆经过点A(4,1)和B(0,-3),且圆心C在直线l:2x-y-5=0上.
(Ⅰ)求圆C的标准方程;
(Ⅱ)若过点P(4,-8)直线l与圆C交点M、N两点,且|MN|=4,求直线l的方程.
分析:(Ⅰ)设圆心坐标为C(a,2a-5),利用圆心为C的圆经过点A(4,1)和B(0,-3),建立方程,求出圆心坐标与半径,即可求圆C的标准方程;
(Ⅱ)直线l的斜率不存在时,直线方程为x=4,满足题意;直线l的斜率存在时,设直线方程为y+8=k(x-4),利用圆心到直线的距离公式建立方程,即可求得结论.
解答:解:(Ⅰ)设圆心坐标为C(a,2a-5),则
∵圆心为C的圆经过点A(4,1)和B(0,-3),
∴(a-4)2+(2a-5-1)2=a2+(2a-5+3)2
∴a=2,
∴圆心坐标为(2,-1),半径为2
2

∴圆C的标准方程为(x-2)2+(y+1)2=8;
(Ⅱ)直线l的斜率不存在时,直线方程为x=4,代入圆的方程可得y=1或-3,此时|MN|=4,
直线l的斜率存在时,设直线方程为y+8=k(x-4),即kx-y-4k-8=0,
∵|MN|=4,
∴圆心到直线的距离为
8-4
=
|2k+1-4k-8|
k2+1

∴k=-
45
28

∴直线方程为45x+28y+44=0.
综上,直线l的方程为45x+28y+44=0或x=4.
点评:本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆心为C的圆经过点A(0,2)和B(-3,3),且圆心C在直线l:x+y+5=0上.
(1)求线段AB的垂直平分线方程;
(2)求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为C的圆经过三个点O(0,0)、A(1,3)、B(4,0)
(1)求圆C的方程;
(2)求过点P(3,6)且被圆C截得弦长为4的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为C的圆经过点A(0,1)和B(-2,3),且圆心在直线l:x+2y-3=0上.
(1)求圆C的标准方程;
(2)若圆C的切线在x轴,y轴上的截距相等,求切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心为C的圆经过点A(1,4),B(3,6),且圆心C在直线4x-3y=0上.
(1)求圆C的方程;
(2)已知直线l:y=x+m(m为正实数),若直线l截圆C所得的弦长为
14
,求实数m的值.
(3)已知点M(-4,0),N(4,0),且P为圆C上一动点,求|PM|2+|PN|2的最小值.

查看答案和解析>>

同步练习册答案