精英家教网 > 高中数学 > 题目详情

【题目】已知圆,圆,直线l过点

若直线l被圆所截得的弦长为,求直线l的方程;

若圆P是以为直径的圆,求圆P与圆的公共弦所在直线方程.

【答案】(1);(2)

【解析】

(1)根据题意,可得圆心C1(0,0),半径r1=2,可设直线l的方程为x﹣1=my﹣2),即xmy+2m﹣1=0,由点到直线的距离公式和圆的弦长公式,解方程可得m,进而得到所求直线方程;

(2)根据题意,求得圆心C2的坐标,结合M的坐标可得圆P的方程,联立圆C2与圆P的方程,作差可得答案.

根据题意,圆,其圆心,半径

又直线l过点且与圆相交,

则可设直线l的方程为,即

直线l被圆所截得的弦长为,则圆心到直线的距离

则有,解可得:;则直线l的方程为

根据题意,圆,圆心

其一般式方程为

又由,圆P是以为直径的圆,则圆P的方程为:,变形可得:

又由,作差可得:

所以圆P与圆的公共弦所在直线方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015·山东) 如图,三棱台-中,分别为,的中点.

(1)求证:平面
(2)若,,求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=4x与点M(0,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若 =0,则k=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱柱中,已知AB=2,

E、F分别为上的点,且.

(1)求证:BE⊥平面ACF;

(2)求点E到平面ACF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在ABC中,a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,在四面体PABC中,S1,S2,S3,S分别表示PAB,PBC,PCA,ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且

(1)判断函数的奇偶性

(2) 判断函数(1,+)上的单调性,并用定义证明你的结论;

(3)求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: (a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,椭圆E的离心率为 ,过点M (m,0)(m> )作斜率不为0的直线l,交椭圆E于A,B两点,点P( ,0),且 为定值.
(Ⅰ)求椭圆E的方程;
(Ⅱ)求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)为二次函数,且f(x-1)+f(x)=2x2+4.

(1)求f(x)的解析式;

(2)当x∈[t,t+2],t∈R时,求函数f(x)的最小值(用t表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若关于的不等式的解集是,求的值;

(2)设关于的不等式的解集是,集合,若,求实数的取值范围.

查看答案和解析>>

同步练习册答案