精英家教网 > 高中数学 > 题目详情
6.已知点M是圆E:(x+1)2+y2=8上的动点,点F(1,0),O为坐标原点,线段MF的垂直平分线交ME于点P,则动点P的轨迹方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$.

分析 根据PE+PF=PE+PM=EM=2$\sqrt{2}$可知P点轨迹为椭圆,使用待定系数法求出即可.

解答 解:∵P在线段ME的垂直平分线上,
∴PF=PM,
∴PE+PF=PE+PM=EM=2$\sqrt{2}$,
∴P点轨迹为以E,F为焦点的椭圆,
设椭圆方程$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,则2a=2$\sqrt{2}$,c=1,
∴a=$\sqrt{2}$,b=1.
∴P点轨迹为$\frac{{x}^{2}}{2}+{y}^{2}=1$.
故答案为$\frac{{x}^{2}}{2}+{y}^{2}$=1.

点评 本题考查了椭圆的定义,轨迹方程的求解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(3b-c)cosA-acosC=0.
(1)求cosA;
(2)若a=2$\sqrt{3}$,△ABC的面积S△ABC=3$\sqrt{2}$,试判断△ABC的形状,并说明理由;
(3)若sinBsinC=$\frac{2}{3}$,求tanA+tanB+tanC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,乙看了甲的卡片后说:“我与甲的卡片上相同的数字不是2”,甲看了丙的卡片说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则写有数字“1和3”的卡片一定在乙手上(填“甲”“乙”“丙”中一个)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2015}}{2015}$,g(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2015}}{2015}$,设函数F(x)=f(x+3)•g(x-4),且函数的所有零点均在[a,b](a,b∈Z)内,则b-a的最小值为(  )
A.6B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线1:ax+by+1=0(a>0,b>0)把圆C:(x+4)2+(y+1)2=16分成面积相等的两部分,则当ab取得最大值时,坐标原点到直线1的距离是(  )
A.4B.8$\sqrt{17}$C.2D.$\frac{8\sqrt{17}}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知各项均为正数的数列{an}的前n项和为Sn,且Sn满足n(n+1)Sn2+(n2+n-1)Sn-1=0(n∈N*),则S1+S2+…+S2017=$\frac{2017}{2018}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设随机变量X服从正态分布N(4,σ2),若P(X>m)=0.3,则P(X>8-m)=(  )
A.0.2B.0.3C.0.7D.与σ的值有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax+xln x(a∈R).
(1)当a=-2时,求函数f(x)的单调区间;
(2)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax-lnax+x2(a>0,a≠1)
(Ⅰ)求函数f(x)在点(0,f(0))处的切线方程
(Ⅱ)求函数f(x)单调递增区间
(Ⅲ)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然对数的底数),求实数a的取值范围.

查看答案和解析>>

同步练习册答案