精英家教网 > 高中数学 > 题目详情

【题目】若定义在上的函数.

(1)求函数的单调区间;

2)若满足,则称更接近.时,试比较哪个更接近,并说明理由.

【答案】(1)当时, 单调递增区间为;当时, 单调递增区间为单调递减区间为;(2)更接近,理由见解析.

【解析】

1)对求导,分进行讨论,研究的正负情况,从而得到的单调区间;(2)设

利用导数研究出的单调性和正负情况,分进行讨论,得到的大小关系,从而得到答案.

(1)函数

求导得到

时,,函数上单调递增;

时,由,得到

所以时,单调递减,

时,单调递增,

综上所述,当时, 单调递增区间为;当时, 单调递增区间为单调递减区间为

(2)设

所以,所以时单调递减,

又因为

所以当,当时,.

,设,则

所以上单调递增,即上单调递增,

,所以时,

所以时单调递增,且

所以.

①当

,则

所以单调递减,.

又因为,所以

所以

所以更接近.

②当时,

,则

所以上单调递减,即上单调递减,

所以

所以上单调递减,

所以,即

所以更接近.

综上所述,当时,更接近.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某校甲、乙、丙三个兴趣小组的学生人数分别为362412.现采用分层抽样的方法从中抽取6人,进行睡眠质量的调查.

1)应从甲、乙、丙三个兴趣小组的学生中分别抽取多少人?

2)设抽出的6人分别用表示,现从6人中随机抽取2人做进一步的身体检查.

i)试用所给字母列出所有可能的抽取结果;

ii)设为事件抽取的2人来自同一兴趣小组,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】明初出现了一大批杰出的骑兵将领,比如徐达、常遇春、李文忠、蓝玉和朱棣.明初骑兵军团击败了不可一世的蒙古骑兵,是当时世界上最强骑兵军团.假设在明军与元军的某次战役中,明军有8位将领,善用骑兵的将领有5人;元军有8位将领,善用骑兵的有4人.

1)现从明军将领中随机选取4名将领,求至多有3名是善用骑兵的将领的概率;

2)在明军和元军的将领中各随机选取2人,为善用骑兵的将领的人数,写出的分布列,并求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn,若对任意正整数n,总存在正整数m,使得Snam,则称数列{an}S数列

1S数列的任意一项是否可以写成其某两项的差?请说明理由.

2)①是否存在等差数列为S数列,若存在,请举例说明;若不存在,请说明理由.

②是否存在正项递增等比数列为S数列,若存在,请举例说明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品的三个质量指标分别为x, y, z, 用综合指标S =" x" + y + z评价该产品的等级. S≤4, 则该产品为一等品. 现从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下:

产品编号

A1

A2

A3

A4

A5

质量指标(x, y, z)

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

产品编号

A6

A7

A8

A9

A10

质量指标(x, y, z)

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率;

(Ⅱ) 在该样品的一等品中, 随机抽取两件产品,

(1) 用产品编号列出所有可能的结果;

(2) 设事件B在取出的2件产品中, 每件产品的综合指标S都等于4”, 求事件B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产万件,需另投入流动成本万元,当年产量小于万件时,(万元);当年产量不小于7万件时,(万元).已知每件产品售价为6元,假若该同学生产的商品当年能全部售完.

1)写出年利润(万年)关于年产量(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)

2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?

(取.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已如椭圆E)的离心率为,点E.

1)求E的方程:

2)斜率不为0的直线l经过点,且与E交于PQ两点,试问:是否存在定点C,使得?若存在,求C的坐标:若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】01234这五个数中任选三个不同的数组成一个三位数,记X为所组成的三位数各位数字之和.

1)求X是奇数的概率;

2)求X的概率分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程是φ为参数,a>0),直线l的参数方程是t为参数),曲线C与直线l有一个公共点在x轴上,以坐标原点为极点,x轴的正半轴为极轴建立坐标系.

1)求曲线C的普通方程;

2)若点Aρ1θ),Bρ2θ),Cρ3θ)在曲线C上,求的值.

查看答案和解析>>

同步练习册答案