精英家教网 > 高中数学 > 题目详情
20.某校高二学生有800名,从中抽取100名学生期末考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100]
(Ⅰ)求图中α的值;
(Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分、中位数、众数;(精确到个位数)
(Ⅲ)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求推测高二这800名学生中数学成绩在[50,90)之外的人数.
分数段[50,60)[60,70)[70,80)[80,90)
x:y1:12:13:44:5

分析 (Ⅰ)由频率和为1,列出方程求出α的值;
(Ⅱ)利用频率分布直方图求出平均数、中位数与众数;
(Ⅲ)根据表格,求出学生的语文成绩对应的人数,即可得出数学成绩对应的人数是多少.

解答 解:(Ⅰ)由频率分布直方图知,
(0.04+0.03+0.02+2α)×10=1,
解得α=0.005;…(2分)
(Ⅱ)55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73,
所以平均分为73;…(4分)
由于直方图中中位数两侧的面积相等,即频率相等,
前两组的频率和为0.45,前三组的频率和为0.75,
所以中位数位于第3组内,设中位数为x,
(x-70)×0.03+0.45=0.5
x≈72;  …(6分)
小组[60,70)的矩形图最高,
所以众数应为$\frac{60+70}{2}$=65; …(8分)
(Ⅲ)分别求出100名学生中,语文成绩在[50,60),[60,70),[70,80),[80,90)的人数依次为0.05×100=5,0.4×100=40,0.3×100=30,0.2×100=20;
所以100名学生中数学成绩在[50,60),[60,70),[70,80),[80,90)的人数依次为:
5,20,40,25;
所以数学成绩在[50,90)之外的人数有100-(5+20+40+25)=10(人);
从而推测高二这800名学生中数学成绩在[50,90)之外的人数为80(人).…(12分)

点评 本题考查了频率分布直方图的应用问题,也考查了平均数、众数与中位数的计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\left\{\begin{array}{l}{sinx(sinx≤cosx)}\\{cosx(cosx>sinx)}\end{array}\right.$,试画出f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.根据正弦函数、余弦函数的图象,在区间[0,2π]内解不等式组$\left\{\begin{array}{l}{sinx≥cosx}\\{sinx≥\frac{1}{2}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在五面体ABCDE中,点O是平行四边形ABCD的对角线的交点,棱$EF\underline{\underline{∥}}\frac{1}{2}BC$
求证:FO∥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.曲线f(x)=exlnx+$\frac{{2{e^{x-1}}}}{x}$在点(1,f(1))处的切线方程为(  )
A.ex-y+2-e=0B.ex+y+2-e=0C.ex-y+2+e=0D.ex+y+2+e=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=cosx•sinx,给出下列五个说法中,其中正确说法的序号是①⑤
①$f(\frac{1921π}{12})=\frac{1}{4}$;                  
②若f(x1)=-f(x2),则x1=-x2
③f(x)在区间$[{-\frac{π}{6},\frac{π}{3}}]$上单调递增;  
④f(x)的图象关于点$(-\frac{π}{4},0)$成中心对称;
⑤将函数f(x)的图象向右平移$\frac{3π}{4}$个单位可得到$y=\frac{1}{2}cos2x$的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知两圆的方程为x2+y2+6x+8y=0,x2+y2-6x-2y-26=0,判断两圆是否相交,若相交,求过两交点的直线方程及两点间的距离;若不相交,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列四个结论:
①函数y=sin(2x+$\frac{π}{3}$)的最小正周期是π;
②“(x-3)(x-4)=0”是“x-3=0”的充分不必要条件;
③命题“若m>0,则方程x2+x-m=0有实数根”的逆否命题为“若方程x2+x-m=0没有实数根,则m≤0”
④若 a>0,b>0,a+b=4,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为1.
其中正确结论的个数为①③④.

查看答案和解析>>

同步练习册答案