精英家教网 > 高中数学 > 题目详情
已知O是四边形ABCD内一点,若+++=0,则:

①四边形ABCD为正方形,点O是正方形ABCD的中心;②四边形ABCD为一般四边形,点O是其对角线交点;③四边形ABCD为一般四边形,点O是其外接圆圆心;④四边形ABCD为一般四边形,点O是其对边中点连线的交点.

上述说法正确的是_____________.(填序号)

答案:④

解析:由+++=0,则+=-(+),若设E、F分别为AB、CD中点,则+=2+=2 ,?∴=-,即E、O、F三点共线,且O为EF中点.由任意四边形四边中点连线为平行四边形和O为两组对边中点的连线的交点.故④正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行
四边形,DC⊥平面ABC,AB=2,已知AE与平面ABC所成的角为θ,
tanθ=
3
2

(1)证明:平面ACD⊥平面ADE;
(2)记AC=x,V(x)表示三棱锥A-CBE的体积,求V(x)的表达式;
(3)当V(x)取得最大值时,求二面角D-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)自圆O外一点P引切线与圆切于点A,M为PA中点,过M引割线交圆于B,C两点.求证:∠MCP=∠MPB.
(2)在平面直角坐标系xOy中,已知四边形ABCD的四个顶点A(0,1),B(2,1),C(2,3),D(0,2),经矩阵M=
10
k1
表示的变换作用后,四边形ABCD变为四边形A1B1C1D1,问:四边形ABCD与四边形A1B1C1D1的面积是否相等?试证明你的结论.
(3)已知A是曲线ρ=12sinθ上的动点,B是曲线ρ=12cos(θ-
π
6
)
上的动点,试求AB的最大值.
(4)设p是△ABC内的一点,x,y,z是p到三边a,b,c的距离,R是△ABC外接圆的半径,证明
x
+
y
+
z
1
2R
a2+b2+c2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知BC是半径为1的半圆O的直径,A是半圆周上不同于B,C的点,又DC⊥面ABC,四边形ACDE为梯形,DE∥AC,且AC=2DE,DC=2,二面角B-DE-C的大小为θ,tanθ=
34

(1)证明:面ABE⊥面ACDE;
(2)求四棱锥B-ACDE的体积.

查看答案和解析>>

科目:高中数学 来源:2010年江西上高二中、新余钢铁中学高三年级全真模拟数学(理科)试题 题型:解答题

如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC平面ABC ,,已知AE与平面ABC所成的角为,且

   (1)证明:平面ACD平面

   (2)记表示三棱锥A-CBE的体积,求的表达式;

   (3)当取得最大值时,求二面角D-AB-C的大小.

 

查看答案和解析>>

科目:高中数学 来源:0103 期末题 题型:解答题

如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,已知AE与平面ABC所成的角为θ,且tanθ=
(Ⅰ)证明:平面ACD⊥平面ADE;
(Ⅱ)记AC=x,V(x)表示三棱锥A-CBE的体积,求V(x)的表达式;
(Ⅲ)当V(x)取得最大值时,求二面角D-AB-C的大小。

查看答案和解析>>

同步练习册答案