精英家教网 > 高中数学 > 题目详情
7.已知y=f′(x)是函数$f(x)=\frac{1}{3}{x^3}+2{x^2}+5$的导数,则f′(1)=(  )
A.$\frac{22}{3}$B.10C.5D.$\frac{10}{9}$

分析 利用导数的运算法求导,再代值计算即可.

解答 解:∵$f(x)=\frac{1}{3}{x^3}+2{x^2}+5$,
∴f′(x)=x2+4x,
∴f′(1)=1+4=5,
故选:C.

点评 本题考查了导数的运算法则,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.等比数列2048,1024,512,…中.最早出现小于1的项是第13项,其值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点R是圆心为Q的圆(x+$\sqrt{3}$)2+y2=16上的一个动点,N($\sqrt{3}$,0)为定点,线段RN的中垂线与直线QR交于点T,设T点的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点(1,0)做直线l与曲线C交于A,B两点,求A,B中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知抛物线和椭圆都经过点M(1,2),它们在x轴上有共同焦点,椭圆的对称轴是坐标轴,抛物线的顶点为坐标原点.则椭圆的焦点坐标为(±1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过抛物线C:y2=2px(p>0)的焦点F的直线l交C于A、B两点,P为C的准线上的动点,且A、B、P三点不共线,∠APB=θ,则$cos\frac{θ}{2}$的取值范围是[$\frac{\sqrt{2}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow a=(2,-1)$,$\overrightarrow b=(3,1)$,则$2\overrightarrow a+3\overrightarrow b$=(  )
A.(12,1)B.(13,5)C.(13,-1)D.(13,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.化简下列各式:
(1)sin23°cos7°+cos23°sin367°;
(2)(1+lg5)0+(-$\frac{8}{27}$)${\;}^{\frac{1}{3}}}$+lg$\frac{1}{5}$-lg2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数是奇函数的是(  )
A.f(x)=x4B.$f(x)=x+\frac{1}{x}$C.f(x)=x3-1D.$f(x)=\frac{1}{x^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\left\{{\begin{array}{l}{2,x>m}\\{{x^2}+4x+4,x≤m}\end{array}}\right.$的图象与直线y=x恰有三个公共点,则实数m的取值范围是(  )
A.(-∞,-1]B.[2,+∞)C.[-1,2]D.[-1,2)

查看答案和解析>>

同步练习册答案