【题目】如图,在四棱锥中,底面为正方形,平面,为的中点,交于点,为的重心.
(1)求证:平面;
(2)若,点在线段上,且,求二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知函数(a,bR).
(1)当a=b=1时,求的单调增区间;
(2)当a≠0时,若函数恰有两个不同的零点,求的值;
(3)当a=0时,若的解集为(m,n),且(m,n)中有且仅有一个整数,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆上任意一点到两焦点距离之和为,离心率为.
(1)求椭圆的标准方程;
(2)若直线的斜率为,直线与椭圆C交于两点.点为椭圆上一点,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱柱ABC—A1B1C1中,四边形AA1B1B为矩形,平面AA1B1B⊥平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.
(1)求证:EF∥平面ABC;
(2)BB1⊥AC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求的最小值;
(2)是否存在实数,同时满足下列条件:①;②当的定义域为时,其值域为.若存在,求出,的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=-x2+ef′()x.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若存在x1,x2(x1<x2),使得f(x1)+f(x2)=1,求证:x1+x2<2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com