精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
13
x3-ax2+10x(x∈R)

(1)若a=3,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程;
(2)若函数y=f(x)在(0,+∞)上为单调增函数,试求a的取值范围.
分析:(1)设出切线的斜率为k,把a=3代入f(x)确定出解析式,根据f(x)的解析式求出导函数,根据二次函数求最值的方法得到导函数的最小值即为斜率k的最小值,然后把x=3代入f(x)中求出f(3)即为切点的纵坐标,得到切点坐标,根据切点坐标和斜率k的最小值写出切线方程即可;
(2)求出f(x)的导函数,由函数在x大于0时为增函数,得到对于x大于0时,导函数值恒大于等于0,令导函数大于等于0,解出a小于等于一个关系式,利用基本不等式求出这个关系式的最小值,即可得到a的取值范围.
解答:解:(1)设切线的斜率为k,
则f'(x)=x2-6x+10=(x-3)2+1,(2分)
显然当x=3时切线斜率取最小值1,
又f(3)=12,(4分)
∴所求切线方程为y-12=x-3,即x-y+9=0.(6分)
(2)f'(x)=x2-2ax+10.(8分)
∵y=f(x)在x∈(0,+∞)为单调递增函数
即对任意的x∈(0,+∞),恒有f'(x)≥0,(10分)
即f'(x)=x2-2ax+10≥0.
a≤
x2+10
2x
=
x
2
+
5
x
,(12分)
x
2
+
5
x
10
,当且仅当x=
10
时,等号成立,
a≤
10
.(14分)
点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,掌握不等式恒成立时满足的条件,掌握函数的单调性与导数的关系,会利用基本不等式求函数的最小值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案