精英家教网 > 高中数学 > 题目详情
12.下表是某公司1-8月份的销售额,通过回归分析得出回归方程为$\widehat{y}$=0.96x+4.54,预测9月份的销售额是(  )万元.
月份12345678
万元5688.510.511.58.513
A.13B.13.18C.13.5D.14

分析 根据线性回归方程,计算x=9时,$\widehat{y}$的值即可.

解答 解:∵线性回归方程为$\widehat{y}$=0.96x+4.54,
当x=9时,$\widehat{y}$=0.96×9+4.54=13.18;
∴预测9月份的销售额是13.18万元.
故选:B.

点评 本题考查了利用回归方程求值的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,地面上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高为10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧.
(1)若圆形标志物半径为25m,以PG所在直线为x轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;
(2)若在点P处观测该圆形标志的最大视角(即∠APF)的正切值为$\frac{41}{39}$,求该圆形标志物的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过定点A(0,a)在x轴上截得弦长为2a的动圆圆心的轨迹方程是(  )
A.x2+(y-a)2=a2B.y2=2axC.(x-a)2+y2=a2D.x2=2ay

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\frac{\sqrt{4-{x}^{2}}}{|x+3|-3}$,若f(a)=$\frac{5\sqrt{7}}{3}$,则f(-a)=(  )
A.$\frac{5\sqrt{7}}{3}$B.-$\frac{5\sqrt{7}}{3}$C.2$\sqrt{7}$D.4$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\frac{{e}^{x}}{|x|}$,关于x的方程f2(x)+(m+1)f(x)+m+4=0(m∈R)有四个相异的实数根,则m的取值范围是(  )
A.(-4,-e-$\frac{4}{e+1}$)B.(-4,-3)C.(-e-$\frac{4}{e+1}$,-3)D.(-e-$\frac{4}{e+1}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算:2${\;}^{lo{g}_{2}9lo{g}_{3}2lo{g}_{4}5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若sinα=-$\frac{\sqrt{2}}{2}$,且α∈[0,2π],则α所有可能取得值是(  )
A.$\frac{π}{4}$,$\frac{3π}{4}$B.$\frac{3π}{4}$,$\frac{5π}{4}$C.$\frac{5π}{4}$D.$\frac{5π}{4}$,$\frac{7π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l:mx+2y+6=0,向量(1-m,1)与l平行,则m的值为(  )
A.-1B.1C.2D.-1或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.不等式x(4-x)≤5的解集是R.

查看答案和解析>>

同步练习册答案