精英家教网 > 高中数学 > 题目详情

【题目】设函数)是定义域为的奇函数.

(1)若,试求不等式的解集;

(2)若,且,求上的最小值.

【答案】(1);(2)当时, 有最小值.

【解析】试题分析:由题意,先由奇函数的性质得出的值,(1)由求出的范围,得出函数的单调性,利用单调性解不等式;(2)得出的值,将函数变为 ,再利用换元法求出函数的最小值.

试题解析:∵是定义域为的奇函数,∴,∴,∴.

(1)∵,∴.又,∴.∵,∴.当时, 上均为增函数,∴上为增函数.原不等式可化为,∴,即.∴.∴不等式的解集为.

(2)∵,∴,即.∴(舍去).∴ .令),则,∵上为增函数(由(1)可知),,即. .∴当时, 取得最小值2,即取得最小值,此时.故当时, 有最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四位同学得到方程2x+e0.3x﹣100=0(其中e=2.7182…)的大于零的近似解依次为①50;②50.1;③49.5;④50.001,你认为的答案为最佳近似解(请填甲、乙、丙、丁中的一个)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)﹣g(x)=ex , 则有(
A.f(2)<f(3)<g(0)
B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3)
D.g(0)<f(2)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海南中学对高二学生进行心理障碍测试得到如下列联表:

焦虑

说谎

懒惰

总计

女生

5

10

15

30

男生

20

10

50

80

总计

25

20

65

110

试说明在这三种心理障碍中哪一种与性别关系最大?
参考数据:K2=

P(K2≥k)

0.5

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.535

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知.f(x)=sinxcosx-cos2x

(1)求f(x)的最小正周期,并求其图象对称中心的坐标;

(2)当0≤x时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数.

I)若曲线在点处的切线平行于,的值;

II)求函数的极值;

III)当,若直线与曲线没有公共点,的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 过点,点 是椭圆上异于长轴端点的两个点.

(1)求椭圆的离心率;

(2)已知直线 ,且,垂足为 ,垂足为,若,求中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市教育局委托调查机构对本市中小学学校使用“微课掌上通”满意度情况进行调查.随机选择小学和中学各50所学校进行调查,调查情况如表:

评分等级

☆☆

☆☆☆

☆☆☆☆

☆☆☆☆☆

小学

2

7

9

20

12

中学

3

9

18

12

8

(备注:“☆”表示评分等级的星级,例如“☆☆☆”表示3星级.)
(1)从评分等级为5星级的学校中随机选取两所学校,求恰有一所学校是中学的概率;
(2)规定:评分等级在4星级以上(含4星)为满意,其它星级为不满意.完成下列2×2列联表并帮助判断:能否在犯错误的概率不超过0.05的前提下认为使用是否满意与学校类别有关系?

学校类型

满意

不满意

总计

小学

50

中学

50

总计

100

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

(Ⅰ)若圆x2y2=4在伸缩变换 (λ>0)的作用下变成一个焦点在x轴上,且离心率为的椭圆,求λ的值;

(Ⅱ)在极坐标系中,已知点A(2,0),点P在曲线Cρ上运动,求PA两点间的距离的最小值.

查看答案和解析>>

同步练习册答案