精英家教网 > 高中数学 > 题目详情

【题目】平面四边形中, , 为等边三角形,现将沿翻折得到四面体,点分别为的中点.

(Ⅰ)求证:四边形为矩形;

(Ⅱ)当平面平面时,求直线与平面所成角的正弦值.

【答案】(Ⅰ)证明见解析 (Ⅱ)

【解析】试题分析】1先运用三角形中位线定理证得四边形为平行四边形,再借助等边三角形的性质及线面垂直的判定定理证明,进而证明,从而证明四边形为矩形;(2)先依据题设条件及面面垂直的性质定理证明平面,再建立空间直角坐标系,运用空间向量的数量积公式求出平面的一个法向量.进而求出直线与平面所成角的正弦值:

解:(Ⅰ)∵点分别为的中点,

∴四边形为平行四边形.

的中点,连结.

为等腰直角三角形, 为正三角形,

,

平面.

又∵平面,∴

可得

∴四边形为矩形.

(Ⅱ)由平面

分别以的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系.

依题意,设,则

.

为平面的一个法向量,则有

,则.

∴直线与平面所成角的正弦值

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线的焦点在抛物线上,点是抛物线上的动点.

(Ⅰ)求抛物线的方程及其准线方程;

(Ⅱ)过点作抛物线的两条切线, 分别为两个切点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若集合A={x|(k+2)x2+2kx+1=0}有且仅有2个子集,则实数k的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=aex+ +b(a>0).
(1)求f(x)在[0,+∞)上的最小值;
(2)设曲线y=f(x)在点(2,f(2))的切线方程为3x﹣2y=0,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为,( 为参数),在以坐标原点为极点, 轴正半轴为极轴的极坐标系中,曲线的极坐标方程为

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)已知点,若点是直线上一动点,过点作曲线的两条切线,切点分别为,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在实数集R上的可导函数f(x),满足f(x+2)是奇函数,且 >2,则不等式f(x)> x﹣1的解集是(
A.(﹣∞,2)
B.(2,+∞)
C.(0,2)
D.(﹣∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式2x2﹣2axy+y2≥0对任意x∈[1,2]及任意y∈[1,4]恒成立,则实数a取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)=sin2x+ sinxcosx+ ,x∈R,
(1)求函数f(x)的最小正周期T及在[﹣π,π]上的单调递减区间;
(2)若关于x的方程f(x)+k=0,在区间[0, ]上且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)=2|xm|﹣1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为(
A.a<b<c
B.c<a<b
C.a<c<b
D.c<b<a

查看答案和解析>>

同步练习册答案