【题目】如图,在直角梯形中, , 为线段(含端点)上一个动点,设对于函数,给出以下三个结论:
①当时,函数的值域为;
②对于任意的,均有;
③对于任意的,函数的最大值均为4.
其中所有正确的结论序号为__________.
【答案】②③
【解析】如图所示,建立直角坐标系.
∵在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),
∴B(0,0),A(﹣2,0),D(﹣1,a),C(0,a).
∵=x,(0≤x≤1).
∴=(﹣2,0)+x(1,a)=(x﹣2,xa),
∴==(0,a)﹣(x﹣2,xa)=(2﹣x,a﹣xa)
∴y=f(x)==(2﹣x,﹣xa)(2﹣x,a﹣xa)
=(2﹣x)2﹣ax(a﹣xa)
=(a2+1)x2﹣(4+a2)x+4.
①当a=2时,y=f(x)=5x2﹣8x+4=,
∵0≤x≤1,∴当x=时,f(x)取得最小值;
又f(0)=4,f(1)=1,∴f(x)max=f(0)=4.
综上可得:函数f(x)的值域为.
因此①不正确.
②由y=f(x)=(a2+1)x2﹣(4+a2)x+4.
可得:a∈(0,+∞),都有f(1)=1成立,因此②正确;
③由y=f(x)=(a2+1)x2﹣(4+a2)x+4.
可知:对称轴x0=.
当0<a≤时,1<x0,∴函数f(x)在[0,1]单调递减,因此当x=0时,函数f(x)取得最大值4.
当时,0<x0<1,函数f(x)在[0,x0)单调递减,在(x0,1]上单调递增.
又f(0)=4,f(1)=1,∴f(x)max=f(0)=4.
因此③正确.
综上可知:只有②③正确.
故答案为:②③.
科目:高中数学 来源: 题型:
【题目】如图,在正四棱锥P﹣ABCD中,AB=2,PA= ,E是棱PC的中点,过AE作平面分别与棱PB、PD交于M、N两点.
(1)若PM= PB,PN=λPD,求λ的值;
(2)求直线PA与平面AMEN所成角的正弦值的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)左、右焦点分别为F1 , F2 , A(2,0)是椭圆的右顶点,过F2且垂直于x轴的直线交椭圆于P,Q两点,且|PQ|=3;
(1)求椭圆的方程;
(2)若直线l与椭圆交于两点M,N(M,N不同于点A),若 =0, = ;
①求证:直线l过定点;并求出定点坐标;
②求直线AT的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数满足:在定义域内存在实数,使得成立,则称函数为“的饱和函数”.给出下列四个函数:①;②; ③;④.其中是“的饱和函数”的所有函数的序号是______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.718 28…为自然对数的底数.
(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e﹣2<a<1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,若
(1)求的值,并写出函数的最小正周期(不需证明);
(2)是否存在正整数,使得函数在区间内恰有个零点?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ( )的最大值为 ,最小值为 .
(1)求 的值;
(2)将函数 图象向右平移 个单位后,再将图象上所有点的纵坐标扩大到原来的 倍,横坐标不变,得到函数 的图象,求方程 的解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA⊥底面ABCD,AD=AP,E为棱PD中点.
(1)求证:PD⊥平面ABE;
(2)若F为AB中点, ,试确定λ的值,使二面角P﹣FM﹣B的余弦值为- .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 ( 为常数,e=2.71828……是自然对数的底数).
(1)当 时,求函数 的单调区间;
(2)若函数 在 内存在两个极值点,求 的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com