【题目】已知函数.
(1)讨论的单调性;
(2)若在区间上有最小值,求a的值.
科目:高中数学 来源: 题型:
【题目】一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图231所示.
图231
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右顶点为,上顶点为.已知椭圆的离心率为,.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线:与椭圆交于,两点,且点在第二象限.与延长线交于点,若的面积是面积的3倍,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系下,方程的图形为如图所示的“幸运四叶草”,又称为玫瑰线.
(1)当玫瑰线的时,求以极点为圆心的单位圆与玫瑰线的交点的极坐标;
(2)求曲线上的点M与玫瑰线上的点N距离的最小值及取得最小值时的点M、N的极坐标(不必写详细解题过程).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆 (a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.
(I)求椭圆的方程;
(II)设直线l: 与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若 (O为原点) ,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有7道题,其中5道甲类题,2道乙类题,张同学从中任取2道题解答.试求:
(1)所取的两道题都是甲类题的概率;
(2)所取的两道题不是同一类题的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程为:,为参数点的极坐标为,曲线C的极坐标方程为.
Ⅰ试将曲线C的极坐标方程化为直角坐标方程,并求曲线C的焦点在直角坐标系下的坐标;
Ⅱ设直线l与曲线C相交于两点A,B,点M为AB的中点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市旅游局为了进一步开发旅游资源,需要了解游客的情况,以便制定相应的策略,在某月中随机抽取甲、乙两个景点各10天的游客数,画出茎叶图如下:若景点甲中的数据的中位数是126,景点乙中的数据的平均数是124.
(1)求,的值;
(2)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据(视样本频率为概率).今从这段时期内任取4天,记其中游客数不低于125人的天数为,求概率;
(3)现从上图的共20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于115且不高于135人的天数为,求的分布列和期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com