精英家教网 > 高中数学 > 题目详情
6.已知a=($\frac{3}{5}$)${\;}^{-\frac{1}{3}}$,b=($\frac{4}{3}$)${\;}^{-\frac{1}{2}}$,c=ln$\frac{3}{5}$,则这三个数从大到小的顺序是a>b>c.

分析 利用指数函数与对数函数单调性即可判断出结论.

解答 解:a=($\frac{3}{5}$)${\;}^{-\frac{1}{3}}$,>1,b=($\frac{4}{3}$)${\;}^{-\frac{1}{2}}$∈(0,1),c=ln$\frac{3}{5}$<0,
则这三个数从大到小的顺序是a>b>c,
故答案为:a>b>c.

点评 本题考查了指数函数与对数函数单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设过曲线f(x)=-ex-x(e为自然对数的底数)上的任意一点的切线l1,总存在过曲线g(x)=mx-3sinx上的一点处的切线l2,使l1⊥l2,则m的取值范围为[-2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知抛物线y2=4x的焦点为F,过点F且倾斜角为45°的直线l与抛物线分别交于A、B两点,则|AB|=(  )
A.3B.6C.8D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}+2\overrightarrow{b}=0$,($\overrightarrow{a}+\overrightarrow{b}$)$•\overrightarrow{a}$=2,则$\overrightarrow{a}•\overrightarrow{b}$=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.计算log324-log38的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.袋中有形状、大小都相同的5只球,其中3只白球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为0.6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若命题p:?x∈A,2x∈B,则(  )
A.¬p:?x0∈A,2x0∈BB.¬p:?x0∉A,2x0∈BC.¬p:?x0∈A,2x0∉BD.¬p:?x∉A,2x∉B

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知m>e>n>1>k>0(e为自然数2.7…),且x=m${\;}^{\frac{1}{e}}$,y=lnn,z=logke,则(  )
A.x>y>zB.x>z>yC.y>x>zD.y>z>x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0,直线l的方程为x-y-1=0.
(1)写出曲线C的参数方程;
(2)在曲线C上求一点P,使点P到直线l的距离最大,并求出此最大值.

查看答案和解析>>

同步练习册答案