分析 (1)证明C1C⊥AC,AC⊥BC,可得AC⊥平面BCC1B1,而B1C?平面BCC1B1,故AC⊥B1C.
(2)连接BC1交B1C于O点,由三角形中位线的性质得OD∥AC1,又OD?平面CDB1,可得AC1∥平面CDB1.
解答 证明:(1)∵C1C⊥平面ABC,AC?面ABC,∴C1C⊥AC.
∵AC=9,BC=12,AB=15,∴AC⊥BC. 又 BC∩C1C=C,
∴AC⊥平面BCC1B1,而B1C?平面BCC1B1,∴AC⊥B1C.
(2)连接BC1交B1C于O点,连接OD,
∵O,D分别为BC1,AB的中点,
∴OD∥AC1,又OD?平面CDB1,AC1?平面CDB1,
∴AC1∥平面CDB1.
点评 本题考查线面垂直、线面平行的方法,体现了数形结合的数学思想,连接BC1交B1C于O点,证明OD∥AC1,是解题的难点.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{3}{2}i$ | B. | $-\frac{3}{2}$ | C. | $\frac{3}{2}i$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x2=2y | B. | x2=4y | C. | x2=2y或x2=4y | D. | x2=3y或x2=2y |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com