精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是定义在(﹣∞,+∞)上的奇函数,当x>0时,f(x)=4x﹣x2 , 若函数f(x)在区间[t,4]上的值域为[﹣4,4],则实数t的取值范围是

【答案】[﹣2﹣2 ,﹣2]
【解析】解:如x<0,则﹣x>0,

∵当x>0时,f(x)=4x﹣x2

∴当﹣x>0时,f(﹣x)=﹣4x+x2

∵函数f(x)是奇函数,

∴f(0)=0,且f(﹣x)=﹣4x+x2=﹣f(x),

则f(x)=4x+x2,x<0,

则函数f(x)=

则当x>0,f(x)=4x﹣x2=﹣(x﹣2)2+4≤4,

当x<0,f(x)=4x+x2=(x+2)2﹣4≥﹣4,

当x<0时,由4x+x2=4,即x2+4x﹣4=0得x= =﹣2﹣2 ,(正值舍掉),

若函数f(x)在区间[t,4]上的值域为[﹣4,4],

则﹣2﹣2 ≤t≤﹣2,

即实数t的取值范围是[﹣2﹣2 ,﹣2],

所以答案是:[﹣2﹣2 ,﹣2]

【考点精析】关于本题考查的函数奇偶性的性质,需要了解在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的左、右焦点为F1(﹣2,0),F2(2,0),点M(﹣2, ) 在椭圆C上.
(1)求椭圆C的标准方程;
(2)已知斜率为k的直线l过椭圆C的右焦点F2 , 与椭圆C相交于A,B两点.
①若|AB|= ,求直线l的方程;
②设点P( ,0),证明: 为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 为f(x)的零点,x= 为y=f(x)图象的对称轴,且f(x)在( )单调,则ω的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线实轴长为6,一条渐近线方程为4x﹣3y=0.过双曲线的右焦点F作倾斜角为 的直线交双曲线于A、B两点
(1)求双曲线的方程;
(2)求线段AB的中点C到焦点F的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.

(1)求证:直线AE⊥平面A1D1E;
(2)求二面角E﹣AD1﹣A1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各命题中不正确的是(
A.函数f(x)=ax+1(a>0,a≠1)的图象过定点(﹣1,1)
B.函数 在[0,+∞)上是增函数
C.函数f(x)=logax(a>0,a≠1)在(0,+∞)上是增函数
D.函数f(x)=x2+4x+2在(0,+∞)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查,得到如下的列联表.

患心肺疾病

不患心肺疾病

合计

5

10

合计

50

已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3名进行其它方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列、数学期望以及方差.
下面的临界值表仅供参考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y满足约束条件 ,若z=ax+y的最大值为4,则a=(
A.3
B.2
C.﹣2
D.﹣3

查看答案和解析>>

同步练习册答案