精英家教网 > 高中数学 > 题目详情

【题目】“双曲线的方程为 ”是“双曲线的渐近线方程为 ”的( )

A. 充分不必要条件 B. 必要不充分条件

C. 充分必要条件 D. 既不充分也不必要条件

【答案】A

【解析】双曲线的方程为,则渐近线方程为,渐近线方程为: ,反之当渐近线方程为时,只需要满足,等轴双曲线即可.故选择充分不必要条件.

故答案为:A.

型】单选题
束】
10

【题目】如图,为测量河对岸塔 的高,先在河岸上选一点 ,使 在塔底 的正东方向上,在点 处测得 点的仰角为 ,再由点 沿北偏东 方向走 到位置 ,测得 ,则塔 的高是( )

A. B. C. D.

【答案】D

【解析】BC=xAC=2x在三角形BCD中, 由正弦定理得到在直角三角形ABC中,角BCA=,进而得到AB= .

故答案为:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为甲投篮3次均未命中的概率为乙每次投篮命中的概率均为乙投篮2次恰好命中1次的概率为乙每次投篮是否命中相互之间没有影响.

(1)若乙投篮3次,求至少命中2次的概率;

(2)若甲、乙各投篮2次,设两人命中的总次数为的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线a、b和平面,下列说法中正确的有______

,则

,则

,则

若直线,直线,则

若直线a在平面外,则

直线a平行于平面内的无数条直线,则

若直线,那么直线a就平行于平面内的无数条直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,若曲线C的极坐标方程为ρ=6cosθ+2sinθ,直线l的参数方程为 (t为参数).
(1)求曲线C的直角坐标方程与直线l的普通方程;
(2)设点Q(1,2),直线l与曲线C交于A,B两点,求|QA||QB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆两点,线段的中点为,射线交椭圆于点,交直线于点.

Ⅰ)求的最小值;

Ⅱ)若

求证:直线过定点;

ii)试问点能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式a﹣ax>ex(2x﹣1)(a>﹣1)有且仅有两个整数解,则实数a的取值范围为(
A.(﹣ ]
B.(﹣1, ]
C.(﹣ ,﹣ ]
D.(﹣ ,﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区业余足球运动员共有15000人,其中男运动员9000人,女运动员6000人,为调查该地区业余足球运动员每周平均踢足球占用时间的情况,采用分层抽样的方法,收集300位业务足球运动员每周平均踢足球占用时间的样本数据(单位:小时)
得到业余足球运动员每周平均踢足球所占用时间的频率分布直方图(如图所示),其中样本数据分组区间为:(0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
将“业务运动员的每周平均踢足球时间所占用时间超过4小时”
定义为“热爱足球”.
附:K2=

P(K2≥k0

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879


(1)应收集多少位女运动员样本数据?
(2)估计该地区每周平均踢足球所占用时间超过4个小时的概率.
(3)在样本数据中,有80位女运动员“热爱足球”.请画出“热爱足球与性别”列联表,并判断是否有99%的把握认为“热爱足球与性别有关”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知表示两个不同的平面 表示两条不同直线对于下列两个命题

①若”是“”的充分不必要条件;

②若”是“”的充要条件.判读正确的是(

A. ①②都是真命题 B. ①是真命题,②是假命题

C. ①是假命题,②是真命题 D. ①②都是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线C1:ρ=2cosθ,将曲线C1上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C,又已知直线l: (t是参数),且直线l与曲线C交于A,B两点.
(1)求曲线C的直角坐标方程,并说明它是什么曲线;
(2)设定点P( ,0),求|PA|+|PB|.

查看答案和解析>>

同步练习册答案