【题目】“双曲线的方程为 ”是“双曲线的渐近线方程为 ”的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
【答案】A
【解析】双曲线的方程为,则渐近线方程为,渐近线方程为: ,反之当渐近线方程为时,只需要满足,等轴双曲线即可.故选择充分不必要条件.
故答案为:A.
【题型】单选题
【结束】
10
【题目】如图,为测量河对岸塔 的高,先在河岸上选一点 ,使 在塔底 的正东方向上,在点 处测得 点的仰角为 ,再由点 沿北偏东 方向走 到位置 ,测得 ,则塔 的高是( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为,甲投篮3次均未命中的概率为,乙每次投篮命中的概率均为,乙投篮2次恰好命中1次的概率为,甲、乙每次投篮是否命中相互之间没有影响.
(1)若乙投篮3次,求至少命中2次的概率;
(2)若甲、乙各投篮2次,设两人命中的总次数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线a、b和平面,下列说法中正确的有______ .
若,则;
若,则;
若,则;
若直线,直线,则;
若直线a在平面外,则;
直线a平行于平面内的无数条直线,则;
若直线,那么直线a就平行于平面内的无数条直线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,若曲线C的极坐标方程为ρ=6cosθ+2sinθ,直线l的参数方程为 (t为参数).
(1)求曲线C的直角坐标方程与直线l的普通方程;
(2)设点Q(1,2),直线l与曲线C交于A,B两点,求|QA||QB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆于两点,线段的中点为,射线交椭圆于点,交直线于点.
(Ⅰ)求的最小值;
(Ⅱ)若,
求证:直线过定点;
(ii)试问点能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若关于x的不等式a﹣ax>ex(2x﹣1)(a>﹣1)有且仅有两个整数解,则实数a的取值范围为( )
A.(﹣ , ]
B.(﹣1, ]
C.(﹣ ,﹣ ]
D.(﹣ ,﹣ )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区业余足球运动员共有15000人,其中男运动员9000人,女运动员6000人,为调查该地区业余足球运动员每周平均踢足球占用时间的情况,采用分层抽样的方法,收集300位业务足球运动员每周平均踢足球占用时间的样本数据(单位:小时)
得到业余足球运动员每周平均踢足球所占用时间的频率分布直方图(如图所示),其中样本数据分组区间为:(0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
将“业务运动员的每周平均踢足球时间所占用时间超过4小时”
定义为“热爱足球”.
附:K2=
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
(1)应收集多少位女运动员样本数据?
(2)估计该地区每周平均踢足球所占用时间超过4个小时的概率.
(3)在样本数据中,有80位女运动员“热爱足球”.请画出“热爱足球与性别”列联表,并判断是否有99%的把握认为“热爱足球与性别有关”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知表示两个不同的平面, 表示两条不同直线,对于下列两个命题:
①若,则“”是“”的充分不必要条件;
②若,则“”是“且”的充要条件.判读正确的是( )
A. ①②都是真命题 B. ①是真命题,②是假命题
C. ①是假命题,②是真命题 D. ①②都是假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知曲线C1:ρ=2cosθ,将曲线C1上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C,又已知直线l: (t是参数),且直线l与曲线C交于A,B两点.
(1)求曲线C的直角坐标方程,并说明它是什么曲线;
(2)设定点P( ,0),求|PA|+|PB|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com