在平面直角坐标系中,已知,直线, 动点到的距离是它到定直线距离的倍. 设动点的轨迹曲线为.
(1)求曲线的轨迹方程.
(2)设点, 若直线为曲线的任意一条切线,且点、到的距离分别为,试判断是否为常数,请说明理由.
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,且经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)如果过点的直线与椭圆交于两点(点与点不重合),
①求的值;
②当为等腰直角三角形时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,为半圆,为半圆直径,为半圆圆心,且,为线段的中点,已知,曲线过点,动点在曲线上运动且保持的值不变.
(I)建立适当的平面直角坐标系,求曲线的方程;
(II)过点的直线与曲线交于两点,与所在直线交于点,,证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示:已知过抛物线的焦点F的直线与抛物线相交于A,B两点。
(1)求证:以AF为直径的圆与x轴相切;
(2)设抛物线在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程;
(3)设过抛物线焦点F的直线与椭圆的交点为C、D,是否存在直线使得,若存在,求出直线的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知直线与抛物线相切于点)且与轴交于点为坐标原点,定点B的坐标为.
(1)若动点满足|=,求点的轨迹.
(2)若过点的直线(斜率不等于零)与(1)中的轨迹交于不同的两点,试求与面积之比的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.
(Ⅰ) 求动圆圆心的轨迹C的方程;
(Ⅱ) 已知点B(-1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, 若x轴是的角平分线, 证明直线l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com