精英家教网 > 高中数学 > 题目详情
过椭圆的左顶点作斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知.
(1)求椭圆的离心率;
(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.
(1);(2).

试题分析:(I)根据,设直线方程为,
确定的坐标,由确定得到
再根据点在椭圆上,求得进一步即得所求
(2)由可设,
得到椭圆的方程为

根据动直线与椭圆有且只有一个公共点P
得到,整理得.
确定的坐标
, 
轴上存在一定点,使得,那么
可得,由恒成立,故,得解.
试题解析:(1)∵ ,设直线方程为,
,则,∴,                   2分
            3分
,∴=,
整理得          4分
点在椭圆上,∴,∴             5分
,∴                   6分
(2)∵可设,
∴椭圆的方程为                              7分
             8分
∵动直线与椭圆有且只有一个公共点P
,即
整理得                            9分
 则有,
                        10分
,
轴上存在一定点,使得,
恒成立 
整理得,                      12分
恒成立,故
所求椭圆方程为                  13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,两条相交线段的四个端点都在椭圆上,其中,直线的方程为,直线的方程为

(1)若,求的值;
(2)探究:是否存在常数,当变化时,恒有

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义:关于x的不等式|x-A|<B的解集叫A的B邻域.
已知a+b-2的a+b邻域为区间(-2,8),其中a、b分别为椭圆+=1的长半轴长和短半轴长,若此椭圆的一焦点与抛物线y2=4x的焦点重合,则椭圆的方程为(  )
A.+=1B.+=1
C.+=1D.+=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆+=1的焦点为F1、F2,点P在椭圆上.若|PF1|=4,则|PF2|=   ,∠F1PF2的大小为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆上有个不同的点为右焦点,组成公差的等差数列,则的最大值为( )
A.199B.200 C.99D.100

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设点P是圆x2y2=4上任意一点,由点Px轴作垂线PP0,垂足为P0,且.
(1)求点M的轨迹C的方程;
(2)设直线lykxm(m≠0)与(1)中的轨迹C交于不同的两点AB.
若直线OAABOB的斜率成等比数列,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0)的一个顶点A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程.
(2)当△AMN的面积为时,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知点B是椭圆+=1(a>b>0)的短轴位于x轴下方的端点,过B作斜率为1的直线交椭圆于点M,点P在y轴上,且PM∥x轴,·=9,若点P的坐标为(0,t),则t的取值范围是(  )
A.0<t<3B.0<t≤3
C.0<t<D.0<t≤

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆=1及以下3个函数:①f(x)=x;②f(x)=sin x;③f(x)=cos x.其中函数图像能等分该椭圆面积的函数个数有(  )
A.1个B.2个
C.3个D.0个

查看答案和解析>>

同步练习册答案