精英家教网 > 高中数学 > 题目详情
15、已知三棱锥P-ABC的侧棱PA,PB,PC两两垂直,下列结论正确的有
①②④
.(写出所有正确结论的编号)
①PA⊥BC,PB⊥AC,PC⊥AB;
②由顶点P作三棱锥的高,其垂足是△ABC的垂心;
③△ABC可能是钝角三角形;
④相对棱中点的连线相交于一点.
分析:①PA⊥BC,PB⊥AC,PC⊥AB,由线面直的性质可以证明;
②由顶点P作三棱锥的高,其垂足是△ABC的垂心,由题设条件验证其是否是底面高线的交点即可;
③△ABC可能是钝角三角形,由垂足的位置可以判决;
④相对棱中点的连线相交于一点,此点是底面高线上的点,由此可以判断.
解答:解:①PA⊥BC,PB⊥AC,PC⊥AB,由此条件可以得出,每一条棱都垂直于另外两条棱所确定的平面,由线面垂直即可即出PA⊥BC,PB⊥AC,PC⊥AB故命题正确;
②由顶点P作三棱锥的高,其垂足是△ABC的垂心,由PA⊥BC,PB⊥AC,PC⊥AB,知三侧棱在底面的射影一定垂直于对边,故垂足是△ABC的垂心,命题正确;
③△ABC可能是钝角三角形,③△ABC不可能是钝角三角形,与实际图形不相符;
④相对棱中点的连线相交于一点,可在图形中用平行四边形对角线相交且互相平分证明出相对棱中点的连线相交于一点,故此命题正确.
综上知结论正确的有①②④
故答案为:①②④.
点评:本题考查棱锥的结构特征,解答本题的关键是对棱锥中点线面的位置关系有着比较熟悉的了解,且能通过其所知的特征判断出一些结论.本题考查了空间想像能力以及推理论证的能力,综合性较强
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥P-ABC的三条侧棱PA,PB,PC两两相互垂直,且PA=2
3
,PB=3,PC=2外接球的直径等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥P-ABC中,PC⊥底面ABC,AB=BC,D、F分别为AC、PC的中点,DE⊥AP于E.
(Ⅰ)求证:AP⊥平面BDE;
(Ⅱ)若AE:EP=1:2,求截面BEF分三棱锥P-ABC所成上、下两部分的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥P-ABC,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB的中点,且△PDB是正三角形,PA⊥PC.
(I)求证:DM∥平面PAC;
(II)求证:平面PAC⊥平面ABC;
(Ⅲ)求三棱锥M-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•河西区二模)如图,已知三棱锥P-ABC中,PA⊥面ABC,其中正视图为Rt△PAC,AC=2
6
,PA=4,俯视图也为直角三角形,另一直角边长为2
2

(Ⅰ)画出侧视图并求侧视图的面积;
(Ⅱ)证明面PAC⊥面PAB;
(Ⅲ)求直线PC与底面ABC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄浦区二模)已知三棱锥P-ABC的棱长都是2,点D是棱AP上不同于P的点.
(1)试用反证法证明直线BD与直线CP是异面直线.
(2)求三棱锥P-ABC的体积VP-ABC

查看答案和解析>>

同步练习册答案