精英家教网 > 高中数学 > 题目详情

函数数学公式在x=-3处不连续,且数学公式存在,则a+b的值等于


  1. A.
    -3
  2. B.
    6
  3. C.
    6
  4. D.
    -6
B
分析:由函数在x=-3处不连续,知b=-3.再由存在,知a=9,由此可知a+b的值.
解答:∵函数在x=-3处不连续,
∴b=-3.
存在,
存在,
∴a=9,∴a+b=9-3=6.
故选B.
点评:本题考查极限的性质及运算,解题时要结合题设条件注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高0.8m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.
精英家教网
根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是 y=-x2+2x+
45

(1)喷出的水流距水面的最大高度是多少?
(2)如果不计其他因素,那么水池半径至少为多少时,才能使喷出的水流都落在水池内?
(3)若水流喷出的抛物线形状与(2)相同,喷头距水面0.35米,水池的面积为12.25π平方米,要使水流最远落点恰好落到水池边缘,此时水流最大高度达到多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)已知

(1)若f(x)在处取得极值,试求c的值和f(x)的单调增区间;

(2)如右图所示,若函数的图象在连续光滑,试猜想拉格朗日中值定理:即一定存在使得?(用含有a,b,f(a),f(b)的表达式直接回答)

(3)利用(2)证明:函数y=g(x)图象上任意两点的连线斜率不小于2e-4.

查看答案和解析>>

科目:高中数学 来源:2006年高考第一轮复习数学:9.11 多面体与正多面体(解析版) 题型:解答题

某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高0.8m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.

根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是
(1)喷出的水流距水面的最大高度是多少?
(2)如果不计其他因素,那么水池半径至少为多少时,才能使喷出的水流都落在水池内?
(3)若水流喷出的抛物线形状与(2)相同,喷头距水面0.35米,水池的面积为12.25π平方米,要使水流最远落点恰好落到水池边缘,此时水流最大高度达到多少米?

查看答案和解析>>

科目:高中数学 来源:模拟题 题型:解答题

已知f(x)=x3-2x2+cx+4,g(x)=ex-e2-x+f(x),
(1)若f(x)在x=1+处取得极值,试求c的值和f(x)的单调增区间;
(2)如下图所示,若函数y=f(x)的图象在[a,b]上连续光滑,试猜想拉格朗日中值定理:即一定存在c∈(a,b)使得f′(c)=?[用含有a,b,f(a),f(b)的表达方式直接回答,不需要写猜想过程]
(3)利用(2)证明:函数y=g(x)图象上任意两点的连线斜率不小于2e-4。

查看答案和解析>>

同步练习册答案