【题目】已知f(x+y)=f(x)+f(y)且f(1)=2,则f(1)+f(2)+…+f(n)不能等于( )
A.f(1)+2f(1)+…+nf(1)
B.f( )
C.n(n+1)
D.n(n+1)f(1)
【答案】D
【解析】解:令x=n,y=1,得f(n+1)=f(n)+f(1)=f(n)+2, ∴f(n+1)﹣f(n)=2,
可得{f(n)}构成以f(1)=2为首项,公差为2的等差数列,
∴f(n)=2+(n﹣1)×2=2n,
因此,f(1)+f(2)+…+f(n)= = =n(n+1)
对于A,由于f(1)+2f(1)+3f(1)+…+nf(1)
=f(1)(1+2+…+n)=2× =n(n+1),故A正确;
对于B,由于f(n)=2n,所以f[ ]=2× =n(n+1),得B正确;
对于C,与求出的前n项和的通项一模一样,故C正确.
对于D,由于n(n+1)f(1)=2n(n+1),故D不正确.
故选:D
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为[﹣1,5],部分对应值如表,
x | ﹣1 | 0 | 4 |
f(x) | 1 | 2 | 2 |
f(x)的导函数y=f′(x)的图象(该图象关于(2,0)中心对称) 如图所示.
下列关于f(x)的命题:
①函数f(x)的极大值点为 0与4;
②函数f(x)在[0,2]上是减函数;
③函数y=f(x)﹣a零点的个数可能为0、1、2、3、4个;
④如果当时x∈[﹣1,t],f(x)的最大值是2,那么t的最大值为5;.
⑤函数f(x)的图象在a=1是上凸的
其中一定正确命题的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,具有线性相关关系,下表为抽样试验的结果:
转速x(转/秒) | 8 | 10 | 12 | 14 | 16 |
每小时生产有缺点的零件数y(件) | 5 | 7 | 8 | 9 | 11 |
参考公式: , = = .
(1)如果y对x有线性相关关系,求回归方程;
(2)若实际生产中,允许每小时生产的产品中有缺点的零件最多有10个,那么机器的运转速度应控制在设么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200.220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图示. (Ⅰ)求直方图中x的值;
(Ⅱ)求月平均用电量的众数和中位数;
(Ⅲ)在月平均用电量为[220,240),[240,260),[260,280)的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在[220,240)的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且Sn=2n2+n,n∈N* , 数列{bn}满足an=4log2bn+3,n∈N* .
(1)求an , bn;
(2)求数列{anbn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=|x﹣3|+|x﹣4|. (Ⅰ)解不等式f(x)≤2;
(Ⅱ)若对任意实数x∈[5,9],f(x)≤ax﹣1恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com