精英家教网 > 高中数学 > 题目详情

已知f(x)=数学公式,f[g(x)]=4-x,
(1)求g(x)的解析式;
(2)求g(5)的值.

解:(1)∵已知f(x)=,f[g(x)]=4-x,
,且g(x)≠-3.
解得g(x)=(x≠-1).
(2)由(1)可知:=
分析:(1)对于函数f(g(x)),把g(x)看做一个整体变量代入函数f(x)的表达式即可求出;
(2)代入(1)的解析式求出即可.
点评:理解函数的定义中的对应法则和复合函数的定义域是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的函数,且满足f(x)+f(x-1)=1,当x∈[0,1]时,f(x)=x2,现有四个命题:
①f(x)是周期函数;且周期为2;②当x∈[1,2]时,f(x)=2x-x2;③f(x)是偶函数;④f(-2004.5)=
34

其中正确命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)满足f(x+4)=f(x)且f(4+x)=f(4-x),若2≤x≤6时,f(x)=|x-b|+c,f(4)=2,则f(lnb)与f(lnc)的大小关系是(  )
A、f(lnb)≤f(lnc)B、f(lnb)≥f(lnc)C、f(lnb)>f(lnc)D、f(lnb)<f(lnc)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若数学公式,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间数学公式上的值域为数学公式,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知f(x)是R上的偶函数,当x≥0时,f (x)=数学公式,又a是函数g (x)=数学公式的正零点,则f(-2),f(a),f(1.5)的大上关系是


  1. A.
    f(1.5)<f(a)<f(-2)
  2. B.
    f(-2)<f(1.5)<f(a)
  3. C.
    f(a)<f(1.5)<f(-2)
  4. D.
    f(1.5)<f(-2)<f(a)

查看答案和解析>>

同步练习册答案