精英家教网 > 高中数学 > 题目详情
已知点M(2,2),N(5,-2),点P在x轴上,分别求满足下列条件的P点坐标.
(1)∠MOP=∠OPN(O是坐标原点).
(2)∠MPN是直角.
分析:(1)根据∠MOP=∠OPN得到平行关系,继而得到斜率相等,即可求出P的坐标
(2)根据∠MPN是直角得到垂直关系,继而得到斜率乘积为-1,即可求出P的坐标
解答:解:设P(x,0),
(1)∵∠MOP=∠OPN,
∴OM∥NP.
∴kOM=kNP
又kOM=
2-0
2-0
=1,
kNP=
0-(-2)
x-5
=
2
x-5
(x≠5),
∴1=
2
x-5
,∴x=7,
即P(7,0).
(2)∵∠MPN=90°,∴MP⊥NP,
∴kMP•kNP=-1.
又kMP=
2
2-x
(x≠2),kNP=
2
x-5
(x≠5),
2
2-x
×
2
x-5
=-1,
解得x=1或x=6,
即P(1,0)或(6,0)
点评:本题考查直线的斜率,直线的倾斜角问题,通过对问题的实际问题得到平行或是垂直关系,最后即可求出P的坐标.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=2
2
,且到直线l:y=x-2的距离为
2
,满足条件的点P的个数为
1
1
(个).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

①求矩阵A;
②已知矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)已知在直角坐标系xOy中,直线l的参数方程为
x=t-3
y=
3
 t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ2-4ρco sθ+3=0.
①求直线l普通方程和曲线C的直角坐标方程;
②设点P是曲线C上的一个动点,求它到直线l的距离的取值范围.
(3)已知函数f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若关于x的不等式f(x)≥a2-a在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知点M(2,2),P是动点,且△POM的三边所在直线的斜率满足kOM+kOP=kPM
(1)求点P的轨迹C的方程;
(2)点N在直线y=4x-1,过N作(1)中轨迹C的两切线,切点分别为A,B,若△ABN是直角三角形,求点N的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年临沂一模理)(12分)

已知点M在椭圆(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点F。

(1)若圆M与y轴相交于A、B两点,且△ABM是边长为2的正三角形,求椭圆的方程;

(2)若点F(1,0),设过点F的直线l交椭圆于C、D两点,若直线l绕点F任意转动时恒有|OC|2+|OD|2<|CD|2,求a的取值范围。

查看答案和解析>>

同步练习册答案