精英家教网 > 高中数学 > 题目详情

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2)已知抛物线上一点,过点作抛物线的两条弦,且,判断直线是否过定点?并说明理由.

【答案】(1);(2)定点

【解析】试题分析:(1)利用点斜式设直线直线的方程,与抛物线联立方程组,结合韦达定理与弦长公式求,再根据解得.(2)先设直线方程, 与抛物线联立方程组,结合韦达定理化简,得,代入方程可得直线过定点

试题解析:(1)拋物线的焦点 ,∴直线的方程为: .

联立方程组,消元得:

.

解得.

∴抛物线的方程为: .

(2)由(1)可得点,可得直线的斜率不为0,

设直线的方程为:

联立,得

①.

,则.

,得:

,即

代人①式检验均满足

∴直线的方程为: .

∴直线过定点(定点不满足题意,故舍去).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】ABCAC6cos B C .

(1)AB的长;

(2)cos 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,函数

(1)若,求的取值范围;

(2)讨论的单调性;

(3)当时,讨论在区间内的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,四边形为矩形, 为等腰三角形, ,平面平面,且分别为的中点.

(1)证明: 平面

(2)证明:平面平面

(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为.

(1)求数列的通项公式;

(2)设数列满足:

对于任意,都有成立.

①求数列的通项公式;

②设数列,问:数列中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一几何体的平面展开图,其中ABCD为正方形,EF分别为PAPD的中点,

在此几何体中,给出下面四个结论:

直线BE与直线CF异面; 直线BE与直线AF异面;

直线EF平面PBC平面BCE平面PAD.

其中正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,四边形是菱形, ,又平面,

是棱的中点, 在棱上,且.

(1)证明:平面平面

(2)若平面,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一几何体的平面展开图,其中ABCD为正方形,EF分别为PAPD的中点,

在此几何体中,给出下面四个结论:

直线BE与直线CF异面; 直线BE与直线AF异面;

直线EF平面PBC平面BCE平面PAD.

其中正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,底面为正三角形, 底面 的中点.

(1)求证: 平面

(2)求证:平面平面

3)在侧棱上是否存在一点使得三棱锥的体积是若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案