科目:高中数学 来源:2012-2013学年山东省高三第三次(3月)周测文科数学试卷(解析版) 题型:解答题
已知,数列满足,数列满足;数列为公比大于的等比数列,且为方程的两个不相等的实根.
(Ⅰ)求数列和数列的通项公式;
(Ⅱ)将数列中的第项,第项,第项,……,第项,……删去后剩余的项按从小到大的顺序排成新数列,求数列的前项和.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三12月阶段性检测理科数学试卷 题型:解答题
将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表:
a1
a2 a3
a4 a5 a6
a7 a8 a9 a10
……
记表中的第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1. Sn为数列{bn}的前n项和,且满足=1(n≥2).
(Ⅰ)证明数列{}成等差数列,并求数列{bn}的通项公式;
(Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第k(k≥3)行所有项的和.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:
我们知道,如果定义在某区间上的函数满足对该区间上的任意两个数、,
总有不等式成立,则称函数为该区间上的向上凸函数(简称上凸).
类比上述定义,对于数列,如果对任意正整数,总有不等式:成立,
则称数列为向上凸数列(简称上凸数列). 现有数列满足如下两个条件:
(1)数列为上凸数列,且;
(2)对正整数(),都有,其中.
则数列中的第五项的取值范围为 ★ .
查看答案和解析>>
科目:高中数学 来源: 题型:
我们知道,如果定义在某区间上的函数满足对该区间上的任意两个数、,总有不等式成立,则称函数为该区间上的向上凸函数(简称上凸). 类比上述定义,对于数列,如果对任意正整数,总有不等式:成立,则称数列为向上凸数列(简称上凸数列). 现有数列满足如下两个条件:
(1)数列为上凸数列,且;
(2)对正整数(),都有,其中.
则数列中的第五项的取值范围为 ▲ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com