【题目】已知函数y=x2的图象在点(x0 , x02)处的切线为l,若l也与函数y=lnx,x∈(0,1)的图象相切,则x0必满足( )
A.0<x0<
B. <x0<1
C. <x0<
D. <x0
【答案】D
【解析】解:函数y=x2的导数为y′=2x,
在点(x0 , x02)处的切线的斜率为k=2x0 ,
切线方程为y﹣x02=2x0(x﹣x0),
设切线与y=lnx相切的切点为(m,lnm),0<m<1,
即有y=lnx的导数为y′= ,
可得2x0= ,切线方程为y﹣lnm= (x﹣m),
令x=0,可得y=lnm﹣1=﹣x02 ,
由0<m<1,可得x0> ,且x02>1,
解得x0>1,
由m= ,可得x02﹣ln(2x0)﹣1=0,
令f(x)=x2﹣ln(2x)﹣1,x>1,
f′(x)=2x﹣ >0,f(x)在x>1递增,
且f( )=2﹣ln2 ﹣1<0,f( )=3﹣ln2 ﹣1>0,
则有x02﹣ln(2x0)﹣1=0的根x0∈( , ).
故选:D.
求出函数y=x2的导数,y=lnx的导数,求出切线的斜率,切线的方程,可得2x0= ,lnm﹣1=﹣x02 , 再由零点存在定理,即可得到所求范围.
科目:高中数学 来源: 题型:
【题目】已知O,A,B三地在同一水平面内,A地在O地正东方向2km处,B地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地为一磁场,距离其不超过 的范围内对测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(1)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(2)商店记录了50天该商品的日需求量(单位:件),整理得表:
日需求量n | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 10 | 15 | 10 | 5 |
①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;
②若该店一天购进10件该商品,记“当天的利润在区间[400,550]”为事件A,求P(A)的估计值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sinx﹣x,若f(cos2θ+2msinθ)+f(﹣2﹣2m)>0对任意的θ∈(0, )恒成立,则实数m的取值范围为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=(x+a)lnx,g(x)= ,已知曲线y=f(x)在x=1处的切线过点(2,3).
(1)求实数a的值.
(2)是否存在自然数k,使得函数y=f(x)﹣g(x)在(k,k+1)内存在唯一的零点?如果存在,求出k;如果不存在,请说明理由.
(3)设函数h(x)=min{f(x),g(x)},(其中min{p,q}表示p,q中的较小值),对于实数m,x0∈(0,+∞),使得h(x0)≥m成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx﹣ x2﹣x+a(a∈R)在其定义域内有两个不同的极值点.
(1)求a的取值范围;
(2)记两个极值点分别为x1 , x2 , 且x1<x2 . 已知λ>0,若不等式e1+λ<x1x2λ恒成立,求λ的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE长为30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角θ满足tan θ=.
(1)若设计AB=18米,AD=6米,问能否保证上述采光要求?
(2)在保证上述采光要求的前提下,如何设计AB与AD的长度,可使得活动中心的截面面积最大? (注:计算中π取3)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com