1£®¸ø³öÏÂÁм¸¸ö½áÂÛ£º
¢ÙÈôÉÈÐεİ뾶Ϊ1£¬Öܳ¤Îª4£¬Ôò¸ÃÉÈÐεÄÔ²ÐĽǵĻ¡¶ÈÊýµÄ¾ø¶ÔֵΪ2£»
¢Úº¯Êýf£¨x£©=$\frac{2x-1}{x-1}$µÄͼÏóµÄ¶Ô³ÆÖÐÐÄÊǵ㣨1£¬2£©£»
¢ÛÒÑÖª$\overrightarrow{a}$=£¨2£¬1£©£¬$\overrightarrow{b}$=£¨1£¬1£©£¬Ôò$\overrightarrow{a}$ÔÚ$\overrightarrow{b}$·½ÏòÉϵÄͶӰΪ$\frac{\sqrt{2}}{2}$£»
¢ÜÈô·½³Ìx2+£¨a+2£©x+a=0ÓÐÒ»¸öÕýʵ¸ùºÍÒ»¸ö¸ºÊµ¸ù£¬Ôòa£¼0£»
¢ÝÉèÇúÏßy=|1-x2|ºÍÖ±Ïßy=m£¬£¨m¡ÊR£©µÄ¹«¹²µã¸öÊýÊÇn£¬ÔònµÄÖµ¿ÉÄÜÊÇ1£®
ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅÊǢ٢ڢܣ®£¨½«ÕýÈ·½áÂÛµÄÐòºÅÈ«²¿ÌîÉÏ£©

·ÖÎö ¶Ô5¸öÃüÌâ·Ö±ð½øÐÐÅжϣ¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º¢ÙÈôÉÈÐεİ뾶Ϊ1£¬Öܳ¤Îª4£¬»¡³¤Îª2£¬Ôò¸ÃÉÈÐεÄÔ²ÐĽǵĻ¡¶ÈÊýµÄ¾ø¶ÔֵΪ2£¬ÕýÈ·£»
¢Úº¯Êýf£¨x£©=$\frac{2x-1}{x-1}$=2+$\frac{1}{x-1}$£¬Í¼ÏóµÄ¶Ô³ÆÖÐÐÄÊǵ㣨1£¬2£©£¬ÕýÈ·£»
¢ÛÒÑÖª$\overrightarrow{a}$=£¨2£¬1£©£¬$\overrightarrow{b}$=£¨1£¬1£©£¬Ôò$\overrightarrow{a}$ÔÚ$\overrightarrow{b}$·½ÏòÉϵÄͶӰΪ$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}$=$\frac{3}{\sqrt{2}}$£¬²»ÕýÈ·£»
¢ÜÈô·½³Ìx2+£¨a+2£©x+a=0ÓÐÒ»¸öÕýʵ¸ùºÍÒ»¸ö¸ºÊµ¸ù£¬Ôòa£¼0£¬ÕýÈ·£»
¢Ý¸ù¾Ýº¯Êýy=|1-x2|µÄͼÏ󣬿ÉÖªÉèÇúÏßy=|1-x2|ºÍÖ±Ïßy=m£¬£¨m¡ÊR£©µÄ¹«¹²µã¸öÊý²»¿ÉÄÜÊÇ1£¬²»ÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü£®

µãÆÀ ´ËÌâÊǸöÖеµÌ⣮¿¼²éº¯ÊýͼÏóµÄ¶Ô³Æ±ä»¯ºÍÒ»Ôª¶þ´Î·½³Ì¸ùµÄÎÊÌ⣬ÒÔ¼°ÉÈÐεÄÔ²ÐĽǵĻ¡¶ÈµÈ»ù´¡ÖªÊ¶£¬¿¼²éѧÉúÁé»îÓ¦ÓÃ֪ʶ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÔÏÂÃüÌâÖУº
¢ÙÉèÓÐÒ»¸ö»Ø¹é·½³Ì$\widehat{y}$=2-3x£¬±äÁ¿xÔö¼ÓÒ»¸öµ¥Î»Ê±£¬yƽ¾ùÔö¼Ó3¸öµ¥Î»£»
¢ÚÁ½¸öËæ»ú±äÁ¿µÄÏßÐÔÏà¹ØÐÔԽǿ£¬ÔòÏà¹ØϵÊýµÄ¾ø¶ÔÖµÔ½½Ó½üÓÚ1£»
¢ÛÔÚijÏî²âÁ¿ÖУ¬²âÁ¿½á¹û¦Î·þ´ÓÕý̬·Ö²¼N£¨1£¬¦Ò2£©£¨¦Ò£¾0£©£®Èô¦ÎÔÚ£¨0£¬1£©ÄÚÈ¡ÖµµÄ¸ÅÂÊΪ0.4£¬Ôò¦ÎÔÚ£¨0£¬2£©ÄÚÈ¡ÖµµÄ¸ÅÂÊΪ0.8£®
¢Ü½«°Ë½øÖÆÊý135£¨8£©×ª»¯Îª¶þ½øÖÆÊýÊÇ1011101£¨2£©
ÆäÖÐÕæÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑ֪˫ÇúÏßµÄÒ»Ìõ½¥½üÏß·½³ÌΪy=$\frac{4}{3}$x£¬ÄÇô¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ$\frac{5}{3}$»ò$\frac{5}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¼ÆËã
£¨1£©$\frac{2lg2+lg3}{{\frac{1}{2}lg36-lg\frac{1}{2}}}+{log_4}£¨{8^7}¡Á{2^5}£©$
£¨2£©$\frac{{\sqrt{1-2sin{{2530}¡ã}cos{{1430}¡ã}}}}{{cos{{1790}¡ã}-\sqrt{1-{{cos}^2}{{170}¡ã}}}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑ֪˫ÇúÏßM£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»Ìõ½¥½üÏß·½³ÌÊÇ$\sqrt{3}$x+y=0£¬µãD£¨1£¬$\sqrt{2}$£©ÔÚCÉÏ£¬¹ýµã£¨0£¬1£©ÇÒбÂÊΪkµÄÖ±Ïß1ÓëË«ÇúÏßM½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£®
£¨1£©ÇóË«ÇúÏßMµÄ·½³Ì£»
£¨2£©ÈôÒÔÏ߶ÎABΪֱ¾¶µÄÔ²¾­¹ý×ø±êÔ­µãO£¬ÇóʵÊýkµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®£¨1£©Éèf£¨¦È£©=sin¦È+cos¦È£¬0¡Ü¦È¡Ü$\frac{¦Ð}{2}$£¬Çóf£¨¦È£©µÄÖµÓò£®
£¨2£©ÒÑÖª²»µÈʽ$\sqrt{2}£¨2a+3£©cos£¨¦È-\frac{¦Ð}{4}£©+\frac{6}{sin¦È+cos¦È}$£¼3a+6+4sin¦Ècos¦È¶ÔÓÚ0¡Ü¦È¡Ü$\frac{¦Ð}{2}$ºã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èçͼ¸ø³öµÄÊǼÆËã1¡Á3+3¡Á5+5¡Á7+¡­+13¡Á15µÄÖµµÄÒ»¸ö³ÌÐò¿òͼ£¬ÆäÖÐÅжϿòÄÚÓ¦ÌîÈëµÄÌõ¼þ²»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®i¡Ý13£¿B£®i£¾14£¿C£®i¡Ý14£¿D£®i¡Ý15£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èôº¯Êýy=f£¨x£©£¨x¡ÊR£©ÊÇżº¯Êý£¬ÇÒf£¨1£©£¼f£¨3£©£¬Ôòf£¨-3£©Óëf£¨-1£©µÄ´óС¹ØϵΪf£¨-3£©£¾f£¨-1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÇóÖ¤£º
£¨1£©cos¦Á•cos¦Â=$\frac{1}{2}$[sin£¨¦Á+¦Â£©-sin£¨¦Á-¦Â£©]£»
£¨2£©cos¦Á•cos¦Â=$\frac{1}{2}$[cos£¨¦Á+¦Â£©+cos£¨¦Á-¦Â£©]£»
£¨3£©sin¦Á•sin¦Â=-$\frac{1}{2}$[cos£¨¦Á+¦Â£©-cos£¨¦Á-¦Â£©]£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸