精英家教网 > 高中数学 > 题目详情

【题目】已知是关于的方程组的解.

1)求证:

2)设分别为三边长,试判断的形状,并说明理由;

3)设为不全相等的实数,试判断 条件,并证明.①充分非必要;②必要非充分;③充分且必要;④非充分非必要.

【答案】1)见解析(2)等边,见解析(3)④,见解析

【解析】

1)将行列式的前两列加到第三列上即可得出结论;

2)由方程组有非零解得出0,即0,将行列式展开化简即可得出abc

3)利用(1),(2)的结论即可答案.

1)证明:将行列式的前两列加到第三列上,

得:a+b+c

2)∵z01,∴方程组有非零解,

0,由(1)可知(a+b+c0

abc分别为△ABC三边长,∴a+b+c≠0

0,即a2+b2+c2abbcac0

2a2+2b2+2c22ab2bc2ac0,即(ab2+bc2+ac20

abc

∴△ABC是等边三角形.

3)若a+b+c0,显然(000)是方程组的一组解,即x02+y02+z020

a+b+c0”不是x02+y02+z020”的充分条件;

x02+y02+z020,则方程组有非零解,

a+b+c0

a+b+c00

由(2)可知a+b+c0abc

a+b+c0”不是x02+y02+z020”的必要条件.

故答案为④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设抛物线C:与直线交于AB两点.

1)当取得最小值为时,求的值.

2)在(1)的条件下,过点作两条直线PMPN分别交抛物线CMNMN不同于点P)两点,且的平分线与轴平行,求证:直线MN的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球教练对甲乙两位运动员在近五场比赛中的得分情况统计如下图所示,根据图表给出如下结论:(1)甲乙两人得分的平均数相等且甲的方差比乙的方差小;(2)甲乙两人得分的平均数相等且甲的方差比乙的方差大;(3)甲的成绩在不断提高,而乙的成绩无明显提高;(4)甲的成绩较稳定,乙的成续基本呈上升状态;结论正确的是( )

A.1)(3B.1)(4C.2)(3D.2)(4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)已知导函数,求的极值;

(2)设,若有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,且点在椭圆C上.

(1)求椭圆C的标准方程;

(2)过椭圆上异于其顶点的任意一点Q作圆的两条切线,切点分别为不在坐标轴上),若直线x轴,y轴上的截距分别为,证明:为定值;

(3)若是椭圆上不同两点,轴,圆E,且椭圆上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:对于任意,满足条件M是与n无关的常数)的无穷数列称为M数列.

(1)若等差数列的前项和为,且,判断数列是否是M数列,并说明理由;

(2)若各项为正数的等比数列的前项和为,且,证明:数列M数列,并指出M的取值范围;

(3)设数列,问数列是否是M数列?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,点在椭圆上.

1求椭圆的方程;

2过点的直线,交椭圆两点,点在椭圆上,坐标原点恰为的重心,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求在区间上的最大值和最小值;

2)在曲线上是否存在点P,使得过点P可作三条直线与曲线相切?若存在,求出其横坐标的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商贸公司售卖某种水果.经市场调研可知:在未来天内,这种水果每箱的销售利润(单位:)与时间,单位:)之间的函数关系式为, 且日销售量 (单位:)与时间之间的函数关系式为

①第天的销售利润为__________;

②在未来的这天中,公司决定每销售箱该水果就捐赠元给精准扶贫对象.为保证销售积极性,要求捐赠之后每天的利润随时间的增大而增大,的最小值是__________

查看答案和解析>>

同步练习册答案