【题目】已知圆,圆与轴交于两点,过点的圆的切线为是圆上异于的一点,垂直于轴,垂足为,是的中点,延长分别交于.
(1)若点,求以为直径的圆的方程,并判断是否在圆上;
(2)当在圆上运动时,证明:直线恒与圆相切.
【答案】(1)圆的方程为,且在圆上;(2)证明见解析.
【解析】试题分析:(1)已知点、的坐标,可求出直线的方程,可求出点的坐标,由圆的方程可知点的坐标,可求出以为直径的圆的方程,将点的坐标代入圆的方程,得在圆上;(2)要证明结论,需证明,可先设点坐标,可求点坐标,进而可求点坐标,得与斜率,得得结论.
试题解析:(1)由,∴直线的方程为,
令,得,由,,则直线的方程为,
令,得,∴为线段的中点,以为直径的圆恰以为圆心,半径等于,
所以,所求圆的方程为,且在圆上,
(2)设,则,直线的方程为,
在此方程中令,得,
直线的斜率,
若,则此时与轴垂直,即,若,则此时直线的斜率为
∴,即,则直线与圆相切
科目:高中数学 来源: 题型:
【题目】某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:
使用智能手机 | 不使用智能手机 | 合计 | |
学习成绩优秀 | 4 | 8 | 12 |
学习成绩不优秀 | 16 | 2 | 18 |
合计 | 20 | 10 | 30 |
附表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
经计算,则下列选项正确的是( )
A.有99.5%的把握认为使用智能手机对学习有影响
B.有99.5%的把握认为使用智能手机对学习无影响
C.有99.9%的把握认为使用智能手机对学习有影响
D.有99.9%的把握认为使用智能手机对学习无影响
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)求的展开式中的系数及展开式中各项系数之和;
(2)从0,2,3,4,5,6这6个数字中任取4个组成一个无重复数字的四位数,求满足条件的四位数的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱柱中,为正方形,为菱形,,平面平面.
(1)求证:;
(2)设点、分别是,的中点,试判断直线与平面的位置关系,并说明理由;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场销售某件商品的经验表明,该商品每日的销量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数。已知销售价格为5元/千克时,每日可售出该商品11千克。
(Ⅰ)求实数的值;
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在边长为3的菱形ABCD中,∠ABC=60°,平面ABCD,且,E为PD中点,F在棱PA上,且.
(1)求证:CE∥平面BDF;
(2)求点P到平面BDF的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面是某市环保局连续30天对空气质量指数的监测数据:
61 76 70 56 81 91 55 91 75 81
88 67 101 103 57 91 77 86 81 83
82 82 64 79 86 85 75 71 49 45
(Ⅰ)完成下面的频率分布表;
(Ⅱ)完成下面的频率分布直方图,并写出频率分布直方图中的值;
(Ⅲ)在本月空气质量指数大于等于91的这些天中随机选取两天,求这两天中至少有一天空气质量指数在区间内的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com