精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线Cy2=2pxp0)的焦点为F,抛物线C上横坐标为3的点M到焦点F的距离为4

1)求抛物线C的方程;

2)过抛物线C的焦点F且斜率为1的直线l交抛物线CAB两点,求弦长|AB|

【答案】(1)y2=4x;(2)8.

【解析】

1)求得抛物线的焦点和准线方程,运用抛物线的定义可得p的方程,求得p,即可得到所求抛物线方程;

2)求得直线l的方程为y=x-1,设Ax1y1),Bx2y2),联立抛物线方程,消去y,可得x的方程,运用韦达定理和弦长公式,计算可得所求值.

解:(1)抛物线Cy2=2pxp0)的焦点F0),准线方程为x=-

|MF|=4,由抛物线的定义可得

p=2.故所求抛物线方程为y2=4x

2)由(1)得p=2,焦点F10),所以直线l的方程为y=x-1

并设Ax1y1),Bx2y2),

联立,消去y,得x2-6x+1=0

所以x1+x2=6

可得x1+x2+p=8

所以|AB|=8

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在边长为的菱形中,交于点,将沿直线折起到的位置(点不与两点重合).

(1)求证:不论折起到何位置,都有平面

(2)当平面时,点是线段上的一个动点,若与平面所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人每射击一次,击中目标得2分,未击中目标得0.若甲、乙两名同学射击的命中率分别为p,且甲、乙两人各射击一次所得分数之和为2的概率为,假设甲、乙两人射击互不影响.

1)求p的值;

2)记甲、乙两人各射击一次所得分数之和为X,求X的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,命题方程表示焦点在轴上的椭圆,命题方程表示双曲线.

(1)若命题是真命题,求实数的范围;

(2)若命题“”为真命题,“”是假命题,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|1-ax≤1+a}a0),B={x|x2-5x+4≤0}

1)若xAxB的必要不充分条件,求实数a的取值范围;

2)对任意xB,不等式x2-mx+4≥0都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的面积为且与轴、轴分别交于两点.

1)求圆的方程;

(2)若直线与线段相交,求实数的取值范围;

(3)试讨论直线与(1)小题所求圆的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}中,a2=-8a6=0

1)求数列{an}的通项公式;

2)若等比数列{bn}满足b1=-8b2=a1+a2+a3,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现代城市大多是棋盘式布局(如北京道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义两点间的直角距离为:.

1)在平面直角坐标系中,写出所有满足到原点的直角距离2格点的坐标.(格点指横、纵坐标均为整数的点)

2)求到两定点直角距离和为定值的动点轨迹方程,并在直角坐标系内作出该动点的轨迹.(在以下三个条件中任选一个做答)

.

3)写出同时满足以下两个条件的格点的坐标,并说明理由(格点指横、纵坐标均为整数的点).

①到两点直角距离相等;

②到两点直角距离和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某水果种植基地引进一种新水果品种,经研究发现该水果每株的产量(单位:)和与它“相近”的株数具有线性相关关系(两株作物“相近”是指它们的直线距离不超过),并分别记录了相近株数为0,1,2,3,4时每株产量的相关数据如下:

0

1

2

3

4

15

12

11

9

8

(1)求出该种水果每株的产量关于它“相近”株数的回归方程;

(2)有一种植户准备种植该种水果500株,且每株与它“相近”的株数都为,计划收获后能全部售出,价格为10元,如果收入(收入=产量×价格)不低于25000元,则的最大值是多少?

(3)该种植基地在如图所示的直角梯形地块的每个交叉点(直线的交点)处都种了一株该种水果,其中每个小正方形的边长和直角三角形的直角边长都为,已知该梯形地块周边无其他树木影响,若从所种的该水果中随机选取一株,试根据(1)中的回归方程,预测它的产量的分布列与数学期望.

附:回归方程中斜率和截距的最小二乘法估计公式分别为:.

查看答案和解析>>

同步练习册答案