精英家教网 > 高中数学 > 题目详情

【题目】已知正三棱锥P﹣ABC底面边长为6,底边BC在平面α内,绕BC旋转该三棱锥,若某个时刻它在平面α上的正投影是等腰直角三角形,则此三棱锥高的取值范围是(

A.(0, ]
B.(0, ]∪[ ,3]
C.(0, ]
D.(0, ]∪[3, ]

【答案】B
【解析】解:设正三棱锥P﹣ABC的高为h,
在△ABC中,设其中心为O,BC中点为E,则OE= ×
当h= 时,PE= ,PB= = ,△PBC为等腰直角三角形,即当△PBC在平面α内时符合,
P不在平面α内时,设p在α内的投影为P',PP'=d,∵△P'BC为等腰直角三角形,故P'E=3PE= >3,
又PE= = >3,
∴h2>6,∴h>
由选项可知B符合,
故选:B.
【考点精析】关于本题考查的棱锥的结构特征,需要了解侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2017南通一模(本题满分16分)如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进行裁剪。已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪。

(1)当时,试判断四边形MNPE的形状,并求其面积;

(2)若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 【2017江西4月质检】如图,四棱锥中,侧面底面 , ,点在棱上,且,点在棱上,且平面.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.
(1)求抛物线C的方程;
(2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=cos( x+ )的图象,只要把y=cos x的图象上所有的点(
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,曲线C的参数方程为θ为参数),直线l的参数方程为.

(1)若a=1,求Cl的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—5:不等式选讲]

已知函数fx)=–x2+ax+4,gx)=│x+1│+│x–1│.

(1)当a=1时,求不等式fx)≥gx)的解集;

(2)若不等式fx)≥gx)的解集包含[–1,1],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个口袋有m个白球,n个黑球(m,n ,n 2),这些球除颜色外全部相同。现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,……,m+n的抽屉内,其中第k次取球放入编号为k的抽屉(k=1,2,3,……,m+n).

(1)试求编号为2的抽屉内放的是黑球的概率p;

(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(x)是x的数学期望,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,tanA是以﹣4为第三项,4为第七项的等差数列的公差,tanB是以 为第三项,9为第六项的等比数列公比,则这个三角形是( )
A.钝角三角形
B.锐角三角形
C.等腰直角三角形
D.以上都不对

查看答案和解析>>

同步练习册答案