精英家教网 > 高中数学 > 题目详情

已知定义在R上的函数数学公式,其中a为常数.
(1)若x=l是函数f(x)的一个极值点,求a的值;
(2)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,求正数a的取值范围.

解:(1)∵=ax3-3x2,∴f′(x)=3ax2-6x,
∵x=l是函数f(x)的一个极值点,∴f′(1)=0,
解得,a=2,此时f′(x)=6(x2-x)=6x(x-1),
∴当x∈(0,1)时,f′(x)<0,当x∈(-∞,0),(1,+∞)时,f′(x)>0,
∴a=2.
(2)由题意得g(x)=f(x)+f′(x)=ax3+3(a-1)x2-6x,a>0且x∈[0,2],
∴g′(x)=3ax2+6(a-1)x-6=3[ax2+2(a-1)x-2],
令g′(x)=0,即ax2+2(a-1)x-2=0,
且△=4(a-1)2+8a=4a2+4>0,
∴方程ax2+2(a-1)x-2=0有两个不同的根,设为x1,x2,则
x1x2=-<0,不妨设x1<0<x2
当0<x2<2时,g(x2)为极小值,则g(x)在[0,2]上的最大值只能为g(0)或g(2);
当x2≥2时,则g(x)在[0,2]上是单调减函数,
∴g(x)在[0,2]上的最大值只能为g(0),
综上得,g(x)在[0,2]上的最大值只能为g(0)或g(2);
∵g(x)在x=0处取得最大值,∴g(0)≥g(2),
即0≥20a-24,得a≤
∵a>0,∴a∈(0,].
分析:(1)先求出函数f(x)的导函数f′(x),由题意f′(1)=0,解得a=2,再代入f′(x),验证在x=1处两侧的导数符号异号;
(2)由题意求出函数g(x)的导函数g′(x),再求g′(x)=0的两个根为x1,x2,再分类讨论与区间[0,2]的大小关系,求出g(x)的最大只能所有情况g(0)或g(2),根据条件列出g(0)≥g(2),代入解析式求出a的范围.
点评:本题主要考查了导数与函数的单调性,极值的关系,以及再给定区间上的最值问题,考查了分类讨论思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案